
Stride Scheduling:
Deterministic Proportional-Share Resource Management

Carl A. Waldspurger � William E. Weihl �
Technical Memorandum MIT/LCS/TM-528

MIT Laboratory for Computer Science
Cambridge, MA 02139

June 22, 1995

Abstract

This paper presents stride scheduling, a deterministic schedul-

ing technique that efficiently supports the same flexible

resource management abstractions introduced by lottery

scheduling. Compared to lottery scheduling, stride schedul-

ing achieves significantly improved accuracy over relative

throughput rates, with significantly lower response time vari-

ability. Stride scheduling implements proportional-share con-

trol over processor time and other resources by cross-applying

elements of rate-based flow control algorithms designed for

networks. We introduce new techniques to support dynamic

changes and higher-level resource management abstractions.

We also introduce a novel hierarchical stride scheduling al-

gorithm that achieves better throughput accuracy and lower

response time variability than prior schemes. Stride schedul-

ing is evaluated using both simulations and prototypes imple-

mented for the Linux kernel.

Keywords: dynamic scheduling, proportional-share resource

allocation, rate-based service, service rate objectives

1 Introduction

Schedulers for multithreaded systems must multiplex
scarce resources in order to service requests of varying
importance. Accurate control over relative computation�E-mail: fcarl, weihlg@lcs.mit.edu. World Wide Web:
http://www.psg.lcs.mit.edu/. Prof. Weihl is currently sup-
ported by DEC while on sabbatical at DEC SRC. This research
was also supported by ARPA under contract N00014-94-1-0985, by
grants from AT&T and IBM, and by an equipment grant from DEC.
The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. government.

rates is required to achieve service rate objectives for
users and applications. Such control is desirable across a
broad spectrum of systems, including databases, media-
based applications, and networks. Motivating examples
include control over frame rates for competing video
viewers, query rates for concurrent clients by databases
and Web servers, and the consumption of shared re-
sources by long-running computations.

Few general-purpose approaches have been proposed
to support flexible, responsive control over service rates.
We recently introduced lottery scheduling, a random-
ized resource allocation mechanism that provides effi-
cient, responsive control over relative computation rates
[Wal94]. Lottery scheduling implements proportional-
share resource management – the resource consumption
rates of active clients are proportional to the relative
shares that they are allocated. Higher-level abstractions
for flexible, modular resource management were also
introduced with lottery scheduling, but they do not de-
pend on the randomized implementation of proportional
sharing.

In this paper we introduce stride scheduling, a deter-
ministic scheduling technique that efficiently supports
the same flexible resource management abstractions in-
troduced by lottery scheduling. One contribution of our
work is a cross-application and generalization of rate-
based flow control algorithms designed for networks
[Dem90, Zha91, ZhK91, Par93] to schedule other re-
sources such as processor time. We present new tech-
niques to support dynamic operations such as the modifi-
cation of relative allocations and the transfer of resource
rights between clients. We also introduce a novel hier-
archical stride scheduling algorithm. Hierarchical stride

1

scheduling is a recursive application of the basic tech-
nique that achieves better throughput accuracy and lower
response time variability than previous schemes.

Simulation results demonstrate that, compared to lot-
tery scheduling, stride scheduling achieves significantly
improved accuracy over relative throughput rates, with
significantly lower response time variability. In con-
trast to other deterministic schemes, stride scheduling
efficiently supports operations that dynamically modify
relative allocations and the number of clients competing
for a resource. We have also implemented prototype
stride schedulers for the Linux kernel, and found that
they provide accurate control over both processor time
and the relative network transmission rates of competing
sockets.

In the next section, we present the core stride-
scheduling mechanism. Section 3 describes extensions
that support the resource management abstractions in-
troduced with lottery scheduling. Section 4 introduces
hierarchical stride scheduling. Simulation results with
quantitative comparisons to lottery scheduling appear in
Section 5. A discussion of our Linux prototypes and re-
lated implementation issues are presented in Section 6.
In Section 7, we examine related work. Finally, we
summarize our conclusions in Section 8.

2 Stride Scheduling

Stride scheduling is a deterministic allocation mecha-
nism for time-shared resources. Resources are allocated
in discrete time slices; we refer to the duration of a
standard time slice as a quantum. Resource rights are
represented by tickets – abstract, first-class objects that
can be issued in different amounts and passed between
clients.1 Throughput rates for active clients are directly
proportional to their ticket allocations. Thus, a client
with twice as many tickets as another will receive twice
as much of a resource in a given time interval. Client
response times are inversely proportional to ticket allo-
cations. Therefore a client with twice as many tickets
as another will wait only half as long before acquiring a
resource.

The throughput accuracy of a proportional-share
scheduler can be characterized by measuring the differ-1In this paper we use the same terminology (e.g., tickets and
currencies) that we introduced for lottery scheduling [Wal94].

ence between the specified and actual number of alloca-
tions that a client receives during a series of allocations.
If a client has t tickets in a system with a total of T
tickets, then its specified allocation after na consecutive
allocations is na � t=T . Due to quantization, it is
typically impossible to achieve this ideal exactly. We
define a client’s absolute error as the absolute value of
the difference between its specified and actual number
of allocations. We define the pairwise relative error
between clients ci and cj as the absolute error for the
subsystem containing only ci and cj , where T = ti+ tj ,
andna is the total number of allocations received by both
clients.

While lottery scheduling offers probabilistic guaran-
tees about throughput and response time, stride schedul-
ing provides stronger deterministic guarantees. For lot-
tery scheduling, after a series ofna allocations, a client’s
expected relative error and expected absolute error are
both O(pna). For stride scheduling, the relative error
for any pair of clients is never greater than one, inde-
pendent of na. However, for skewed ticket distributions
it is still possible for a client to have O(nc) absolute
error, where nc is the number of clients. Nevertheless,
stride scheduling is considerably more accurate than lot-
tery scheduling, since its error does not grow with the
number of allocations. In Section 4, we introduce a
hierarchical variant of stride scheduling that provides a
tighter O(lgnc) bound on each client’s absolute error.

This section first presents the basic stride-scheduling
algorithm, and then introduces extensions that support
dynamic client participation, dynamic modifications to
ticket allocations, and nonuniform quanta.

2.1 Basic Algorithm

The core stride scheduling idea is to compute a repre-
sentation of the time interval, or stride, that a client must
wait between successive allocations. The client with the
smallest stride will be scheduled most frequently. A
client with half the stride of another will execute twice
as quickly; a client with double the stride of another
will execute twice as slowly. Strides are represented in
virtual time units called passes, instead of units of real
time such as seconds.

Three state variables are associated with each client:
tickets, stride, and pass. The tickets field specifies
the client’s resource allocation, relative to other clients.

2

/* per-client state */
typedef struct f: : :
int tickets, stride, pass;g *client t;

/* large integer stride constant (e.g. 1M) */
const int stride1 = (1 << 20);

/* current resource owner */
client t current;

/* initialize client with specified allocation */
void client init(client t c, queue t q, int tickets)f

/* stride is inverse of tickets */
c->tickets = tickets;
c->stride = stride1 / tickets;
c->pass = c->stride;

/* join competition for resource */
queue insert(q, c);g

/* proportional-share resource allocation */
void allocate(queue t q)f

/* select client with minimum pass value */
current = queue remove min(q);

/* use resource for quantum */
use resource(current);

/* compute next pass using stride */
current->pass += current->stride;
queue insert(q, current);g

Figure 1: Basic Stride Scheduling Algorithm. ANSI

C code for scheduling a static set of clients. Queue ma-

nipulations can be performed in O(lgnc) time by using an

appropriate data structure.

The stride field is inversely proportional to tickets, and
represents the interval between selections, measured in
passes. The pass field represents the virtual time index
for the client’s next selection.

Performing a resource allocation is very simple: the
client with the minimum pass is selected, and its pass
is advanced by its stride. If more than one client has
the same minimum pass value, then any of them may be
selected. A reasonable deterministic approach is to use
a consistent ordering to break ties, such as one defined
by unique client identifiers.

Figure 1 lists ANSI C code for the basic stride
scheduling algorithm. For simplicity, we assume a static
set of clients with fixed ticket assignments. The stride
scheduling state for each client must be initialized via
client init() before any allocations are performed by al-
locate(). These restrictions will be relaxed in subsequent
sections to permit more dynamic behavior.

To accurately represent stride as the reciprocal of
tickets, a floating-point representation could be used.
We present a more efficient alternative that uses a high-
precision fixed-point integer representation. This is eas-
ily implemented by multiplying the inverted ticket value
by a large integer constant. We will refer to this constant
as stride1, since it represents the stride corresponding to
the minimum ticket allocation of one.2

The cost of performing an allocation depends
on the data structure used to implement the client
queue. A priority queue can be used to imple-
ment queue remove min() and other queue operations
in O(lgnc) time or better, where nc is the number of
clients [Cor90]. A skip list could also provide expectedO(lgnc) time queue operations with low constant over-
head [Pug90]. For small nc or heavily skewed ticket
distributions, a simple sorted list is likely to be most
efficient in practice.

Figure 2 illustrates an example of stride scheduling.
Three clients, A, B, and C , are competing for a time-
shared resource with a 3 : 2 : 1 ticket ratio. For simplicity,
a convenient stride1 = 6 is used instead of a large number,
yielding respective strides of 2, 3, and 6. The pass value
of each client is plotted as a function of time. For each
quantum, the client with the minimum pass value is
selected, and its pass is advanced by its stride. Ties are2Appendix A discusses the representation of strides in more
detail.

3

0 5 10

Time (quanta)

0

5

10

15

20

P
as

s
V

al
ue

Figure 2: Stride Scheduling Example. Clients A (trian-

gles), B (circles), and C (squares) have a 3 : 2 : 1 ticket ratio.

In this example, stride1 = 6, yielding respective strides of 2,

3, and 6. For each quantum, the client with the minimum pass

value is selected, and its pass is advanced by its stride.

broken using the arbitrary but consistent client orderingA, B, C .

2.2 Dynamic Client Participation

The algorithm presented in Figure 1 does not support
dynamic changes in the number of clients competing for
a resource. When clients are allowed to join and leave
at any time, their state must be appropriately modified.
Figure 3 extends the basic algorithm to efficiently handle
dynamic changes.

A key extension is the addition of global variables
that maintain aggregate information about the set of ac-
tive clients. The global tickets variable contains the
total ticket sum for all active clients. The global pass
variable maintains the “current” pass for the scheduler.
The global pass advances at the rate of global stride per
quantum, where global stride = stride1 / global tickets.
Conceptually, the global pass continuously advances at
a smooth rate. This is implemented by invoking the
global pass update() routine whenever the global pass
value is needed.33Due to the use of a fixed-point integer representation for
strides, small quantization errors may accumulate slowly, causing

A state variable is also associated with each client
to store the remaining portion of its stride when a dy-
namic change occurs. The remain field represents the
number of passes that are left before a client’s next se-
lection. When a client leaves the system, remain is
computed as the difference between the client’s pass
and the global pass. When a client rejoins the system,
its pass value is recomputed by adding its remain value
to the global pass.

This mechanism handles situations involving either
positive or negative error between the specified and ac-
tual number of allocations. If remain < stride, then
the client is effectively given credit when it rejoins for
having previously waited for part of its stride without
receiving a quantum. If remain > stride, then the client
is effectively penalized when it rejoins for having previ-
ously received a quantum without waiting for its entire
stride.4

This approach makes an implicit assumption that a
partial quantum now is equivalent to a partial quantum
later. In general, this is a reasonable assumption, and
resembles the treatment of nonuniform quanta that will
be presented Section 2.4. However, it may not be ap-
propriate if the total number of tickets competing for
a resource varies significantly between the time that a
client leaves and rejoins the system.

The time complexity for both the client leave() and
client join() operations isO(lgnc), wherenc is the num-
ber of clients. These operations are efficient because the
stride scheduling state associated with distinct clients is
completely independent; a change to one client does not
require updates to any other clients. The O(lgnc) cost
results from the need to perform queue manipulations.

2.3 Dynamic Ticket Modifications

Additional support is needed to dynamically modify
client ticket allocations. Figure 4 illustrates a dynamic
allocation change, and Figure 5 lists ANSI C code for

global pass to drift away from client pass values over a long period
of time. This is unlikely to be a practical problem, since client pass
values are recomputed using global pass each time they leave and
rejoin the system. However, this problem can be avoided by very
infrequently resetting global pass to the minimum pass value for the
set of active clients.4Several interesting alternatives could also be implemented. For
example, a client could be given credit for some or all of the passes
that elapse while it is inactive.

4

/* per-client state */
typedef struct f: : :
int tickets, stride, pass, remain;g *client t;

/* quantum in real time units (e.g. 1M cycles) */
const int quantum = (1 << 20);

/* large integer stride constant (e.g. 1M) */
const int stride1 = (1 << 20);

/* current resource owner */
client t current;

/* global aggregate tickets, stride, pass */
int global tickets, global stride, global pass;

/* update global pass based on elapsed real time */
void global pass update(void)f
static int last update = 0;
int elapsed;

/* compute elapsed time, advance last update */
elapsed = time() - last update;
last update += elapsed;

/* advance global pass by quantum-adjusted stride */
global pass +=

(global stride * elapsed) / quantum;g
/* update global tickets and stride to reflect change */
void global tickets update(int delta)f
global tickets += delta;
global stride = stride1 / global tickets;g

/* initialize client with specified allocation */
void client init(client t c, int tickets)f

/* stride is inverse of tickets, whole stride remains */
c->tickets = tickets;
c->stride = stride1 / tickets;
c->remain = c->stride;g

/* join competition for resource */
void client join(client t c, queue t q)f

/* compute pass for next allocation */
global pass update();
c->pass = global_pass + c->remain;

/* add to queue */
global tickets update(c->tickets);
queue insert(q, c);g

/* leave competition for resource */
void client leave(client t c, queue t q)f

/* compute remainder of current stride */
global pass update();
c->remain = c->pass - global_pass;

/* remove from queue */
global tickets update(-c->tickets);
queue remove(q, c);g

/* proportional-share resource allocation */
void allocate(queue t q)f
int elapsed;

/* select client with minimum pass value */
current = queue remove min(q);

/* use resource, measuring elapsed real time */
elapsed = use resource(current);

/* compute next pass using quantum-adjusted stride */
current->pass +=

(current->stride * elapsed) / quantum;
queue insert(q, current);g

Figure 3: Dynamic Stride Scheduling Algorithm. ANSI C code for stride scheduling operations, including support for

joining, leaving, and nonuniform quanta. Queue manipulations can be performed in O(lg nc) time by using an appropriate data

structure.

5

stride’

stride

global_pass pass

global_pass pass’

remain

remain’

done

Figure 4: Allocation Change. Modifying a client’s al-

location from tickets to tickets0 requires only a constant-time

recomputation of its stride and pass. The new stride0 is in-

versely proportional to tickets0 . The new pass0 is determined

by scaling remain, the remaining portion of the the current

stride, by stride0 / stride.

/* dynamically modify client ticket allocation */
void client modify(client t c, queue t q, int tickets)f
int remain, stride;

/* leave queue for resource */
client leave(c, q);

/* compute new stride */
stride = stride1 / tickets;

/* scale remaining passes to reflect change in stride */
remain = (c->remain * stride) / c->stride;

/* update client state */
c->tickets = tickets;
c->stride = stride;
c->remain = remain;

/* rejoin queue for resource */
client join(c, q);g

Figure 5: Dynamic Ticket Modification. ANSI C code

for dynamic modifications to client ticket allocations. Queue

manipulations can be performed in O(lgnc) time by using

an appropriate data structure.

dynamically changing a client’s ticket allocation. When
a client’s allocation is dynamically changed from tickets
to tickets0, its stride and pass values must be recom-
puted. The new stride0 is computed as usual, inversely
proportional to tickets0. To compute the new pass0, the
remaining portion of the client’s current stride, denoted
by remain, is adjusted to reflect the new stride0. This
is accomplished by scaling remain by stride0 / stride.
In Figure 4, the client’s ticket allocation is increased,
so pass is decreased, compressing the time remaining
until the client is next selected. If its allocation had de-
creased, then pass would have increased, expanding the
time remaining until the client is next selected.

The client modify() operation requiresO(lg nc) time,
where nc is the number of clients. As with dy-
namic changes to the number of clients, ticket allocation
changes are efficient because the stride scheduling state
associated with distinct clients is completely indepen-
dent; the dominant cost is due to queue manipulations.

2.4 Nonuniform Quanta

With the basic stride scheduling algorithm presented in
Figure 1, a client that does not consume its entire allo-
cated quantum would receive less than its entitled share
of a resource. Similarly, it may be possible for a client’s
usage to exceed a standard quantum in some situations.
For example, under a non-preemptive scheduler, client
run lengths can vary considerably.

Fortunately, fractional and variable-size quanta can
easily be accommodated. When a client consumes a
fraction f of its allocated time quantum, its pass should
be advanced by f � stride instead of stride. If f < 1,
then the client’s pass will be increased less, and it will
be scheduled sooner. If f > 1, then the client’s pass
will be increased more, and it will be scheduled later.
The extended code listed in Figure 3 supports nonuni-
form quanta by effectively computing f as the elapsed
resource usage time divided by a standard quantum in
the same time units.

Another extension would permit clients to specify
the quantum size that they require.5 This could be im-
plemented by associating an additional quantumc field
with each client, and scaling each client’s stride field by5An alternative would be to allow a client to specify its scheduling
period. Since a client’s period and quantum are related by its relative
resource share, specifying one quantity yields the other.

6

quantumc / quantum. Deviations from a client’s speci-
fied quantum would still be handled as described above,
with f redefined as the elapsed resource usage divided
by the client-specific quantumc.
3 Flexible Resource Management

Since stride scheduling enables low-overhead dynamic
modifications, it can efficiently support the flexible re-
source management abstractions introduced with lottery
scheduling [Wal94]. In this section, we explain how
ticket transfers, ticket inflation, and ticket currencies
can be implemented on top of a stride-based substrate
for proportional sharing.

3.1 Ticket Transfers

A ticket transfer is an explicit transfer of tickets from
one client to another. Ticket transfers are particularly
useful when one client blocks waiting for another. For
example, during a synchronous RPC, a client can loan its
resource rights to the server computing on its behalf. A
transfer of t tickets between clients A andB essentially
consists of two dynamic ticket modifications. Using
the code presented in Figure 5, these modifications are
implemented by invoking client modify(A, q, A.tickets
– t) and client modify(B, q, B.tickets + t). When A
transfers tickets to B, A’s stride and pass will increase,
while B’s stride and pass will decrease.

A slight complication arises in the case of a complete
ticket transfer; i.e., when A transfers its entire ticket al-
location to B. In this case, A’s adjusted ticket value is
zero, leading to an adjusted stride of infinity (division
by zero). To circumvent this problem, we record the
fraction of A’s stride that is remaining at the time of the
transfer, and then adjust that remaining fraction whenA once again obtains tickets. This can easily be imple-
mented by computingA’s remain value at the time of the
transfer, and deferring the computation of its stride and
pass values until A receives a non-zero ticket allocation
(perhaps via a return transfer from B).

3.2 Ticket Inflation

An alternative to explicit ticket transfers is ticket infla-
tion, in which a client can escalate its resource rights
by creating more tickets. Ticket inflation (or deflation)

simply consists of a dynamic ticket modification for a
client. Ticket inflation causes a client’s stride and pass to
decrease; deflation causes its stride and pass to increase.

Ticket inflation is useful among mutually trusting
clients, since it permits resource rights to be reallocated
without explicitly reshuffling tickets among clients.
However, ticket inflation is also dangerous, since any
client can monopolize a resource simply by creating a
large number of tickets. In order to avoid the dangers
of inflation while still exploiting its advantages, we in-
troduced a currency abstraction for lottery scheduling
[Wal94] that is loosely borrowed from economics.

3.3 Ticket Currencies

A ticket currency defines a resource management ab-
straction barrier that contains the effects of ticket in-
flation in a modular way. Tickets are denominated in
currencies, allowing resource rights to be expressed in
units that are local to each group of mutually trusting
clients. Each currency is backed, or funded, by tick-
ets that are denominated in more primitive currencies.
Currency relationships may form an arbitrary acyclic
graph, such as a hierarchy of currencies. The effects of
inflation are locally contained by effectively maintain-
ing an exchange rate between each local currency and a
common base currency that is conserved. The currency
abstraction is useful for flexibly naming, sharing, and
protecting resource rights.

The currency abstraction introduced for lottery
scheduling can also be used with stride scheduling. One
implementation technique is to always immediately con-
vert ticket values denominated in arbitrary currencies
into units of the common base currency. Any changes
to the value of a currency would then require dynamic
modifications to all clients holding tickets denominated
in that currency, or one derived from it.6 Thus, the
scope of any changes in currency values is limited to
exactly those clients which are affected. Since curren-
cies are used to group and isolate logical sets of clients,
the impact of currency fluctuations will typically be very
localized.6An important exception is that changes to the number of tick-
ets in the base currency do not require any modifications. This is
because all stride scheduling state is computed from ticket values
expressed in base units, and the state associated with distinct clients
is independent.

7

4 Hierarchical Stride Scheduling

Stride scheduling guarantees that the relative throughput
error for any pair of clients never exceeds a single quan-
tum. However, depending on the distribution of tickets
to clients, a large O(nc) absolute throughput error is
still possible, where nc is the number of clients.

For example, consider a set of 101 clients with a
100 : 1 : : : : : 1 ticket allocation. A schedule that mini-
mizes absolute error and response time variability would
alternate the 100-ticket client with each of the single-
ticket clients. However, the standard stride algorithm
schedules the clients in order, with the 100-ticket client
receiving 100 quanta before any other client receives
a single quantum. Thus, after 100 allocations, the in-
tended allocation for the 100-ticket client is 50, while
its actual allocation is 100, yielding a large absolute
error of 50. This behavior is also exhibited by sim-
ilar rate-based flow control algorithms for networks
[Dem90, Zha91, ZhK91, Par93].

In this section we describe a novel hierarchical variant
of stride scheduling that limits the absolute throughput
error of any client toO(lgnc) quanta. For the 101-client
example described above, hierarchical stride scheduler
simulations produced a maximum absolute error of only
4.5. Our algorithm also significantly reduces response
time variability by aggregating clients to improve in-
terleaving. Since it is common for systems to consist
of a small number of high-throughput clients together
with a large number of low-throughput clients, hierarchi-
cal stride scheduling represents a practical improvement
over previous work.

4.1 Basic Algorithm

Hierarchical stride scheduling is essentially a recur-
sive application of the basic stride scheduling algo-
rithm. Individual clients are combined into groups with
larger aggregate ticket allocations, and correspondingly
smaller strides. An allocation is performed by invok-
ing the normal stride scheduling algorithm first among
groups, and then among individual clients within groups.

Although many different groupings are possible, we
consider a balanced binary tree of groups. Each leaf
node represents an individual client. Each internal node
represents the group of clients (leaf nodes) that it covers,
and contains their aggregate tickets, stride, and pass

/* binary tree node */
typedef struct node f: : :
struct node *left, *right, *parent;
int tickets, stride, pass;g *node t;

/* quantum in real time units (e.g. 1M cycles) */
const int quantum = (1 << 20);

/* large integer stride constant (e.g. 1M) */
const int stride1 = (1 << 20);

/* current resource owner */
client t current;

/* proportional-share resource allocation */
void allocate(node t root)f
int elapsed;
node t n;

/* traverse root-to-leaf path following min pass */
for (n = root; !node is leaf(n);)
if (n->left == NULL ||

n->right->pass < n->left->pass)
n = n->right;

else
n = n->left;

/* use resource, measuring elapsed real time */
current = n;
elapsed = use_resource(current);

/* update pass for each ancestor using its stride */
for (n = current; n != NULL; n = n->parent)
n->pass += (n->stride * elapsed) / quantum;g

Figure 6: Hierarchical Stride Scheduling Algorithm.
ANSI C code for hierachical stride scheduling with a static set

of clients. The main data structure is a binary tree of nodes.

Each node represents either a client (leaf) or a group (internal

node) that summarizes aggregate information.

8

values. Thus, for an internal node, tickets is the total
ticket sum for all of the clients that it covers, and stride
= stride1 / tickets. The pass value for an internal node
is updated whenever the pass value for any of the clients
that it covers is modified.

Figure 6 presents ANSI C code for the basic hierar-
chical stride scheduling algorithm. Each node has the
normal tickets, stride, and pass scheduling state, as well
as the usual tree links to its parent, left child, and right
child. An allocation is performed by tracing a path from
the root of the tree to a leaf, choosing the child with the
smaller pass value at each level. Once the selected client
has finished using the resource, its pass value is updated
to reflect its usage. The client update is identical to
that used in the dynamic stride algorithm that supports
nonuniform quanta, listed in Figure 3. However, the hi-
erarchical scheduler requires additional updates to each
of the client’s ancestors, following the leaf-to-root path
formed by successive parent links.

Each client allocation can be viewed as a series of
pairwise allocations among groups of clients at each
level in the tree. The maximum error for each pairwise
allocation is 1, and in the worst case, error can accumu-
late at each level. Thus, the maximum absolute error
for the overall tree-based allocation is the height of the
tree, which is dlg nce, where nc is the number of clients.
Since the error for a pairwise A : B ratio is minimized
when A = B, absolute error can be further reduced by
carefully choosing client leaf positions to better balance
the tree based on the number of tickets at each node.

4.2 Dynamic Modifications

Extending the basic hierarchical stride algorithm to
support dynamic modifications requires a careful consid-
eration of the effects of changes at each level in the tree.
Figure 7 lists ANSI C code for performing a ticket mod-
ification that works for both clients and internal nodes.
Changes to client ticket allocations essentially follow
the same scaling and update rules used for normal stride
scheduling, listed in Figure 5. The hierarchical sched-
uler requires additional updates to each of the client’s
ancestors, following the leaf-to-root path formed by suc-
cessive parent links. Note that the root pass value used
in Figure 7 effectively takes the place of the global pass
variable used in Figure 5; both represent the aggregate
global scheduler pass.

/* dynamically modify node allocation by delta tickets */
void node modify(node t n, node t root, int delta)f
int old stride, remain;

/* compute new tickets, stride */
old stride = n->stride;
n->tickets += delta;
n->stride = stride1 / n->tickets;

/* done when reach root */
if (n == root)
return;

/* scale remaining passes to reflect change in stride */
remain = n->pass - root->pass;
remain = (remain * n->stride) / old stride;
n->pass = root->pass + remain;

/* propagate change to ancestors */
node modify(n->parent, root, delta);g

Figure 7: Dynamic Ticket Modification. ANSI C code

for dynamic modifications to client ticket allocations un-

der hierarchical stride scheduling. A modification requiresO(lgnc) time to propagate changes.

9

Although not presented here, we have also devel-
oped operations to support dynamic client participa-
tion under hierarchical stride scheduling [Wal95]. As
for allocate(), the time complexity for client join() and
client leave() operations is O(lg nc), where nc is the
number of clients.

5 Simulation Results

This section presents the results of several quantitative
experiments designed to evaluate the effectiveness of
stride scheduling. We examine the behavior of stride
scheduling in both static and dynamic environments,
and also test hierarchical stride scheduling. When stride
scheduling is compared to lottery scheduling, we find
that the stride-based approach provides more accurate
control over relative throughput rates, with much lower
variance in response times.

For example, Figure 8 presents the results of schedul-
ing three clients with a 3 : 2 : 1 ticket ratio for 100 al-
locations. The dashed lines represent the ideal alloca-
tions for each client. It is clear from Figure 8(a) that
lottery scheduling exhibits significant variability at this
time scale, due to the algorithm’s inherent use of ran-
domization. In contrast, Figure 8(b) indicates that the
deterministic stride scheduler produces precise periodic
behavior.

5.1 Throughput Accuracy

Under randomized lottery scheduling, the expected
value for the absolute error between the specified and
actual number of allocations for any set of clients isO(pna), where na is the number of allocations. This
is because the number of lotteries won by a client has
a binomial distribution. The probability p that a client
holding t tickets will win a given lottery with a total of T
tickets is simply p = t=T . After na identical lotteries,
the expected number of wins w is E[w] = nap, with
variance �2w = nap(1� p).

Under deterministic stride scheduling, the relative er-
ror between the specified and actual number of alloca-
tions for any pair of clients never exceeds one, indepen-
dent of na. This is because the only source of relative
error is due to quantization.

0 20 40 60 80 100

Time (quanta)

0

10

20

30

40

50

C
um

ul
at

iv
e

Q
ua

nt
a

A

B

C

0 20 40 60 80 100
0

10

20

30

40

50

C
um

ul
at

iv
e

Q
ua

nt
a

A

B

C

Figure 8: Lottery vs. Stride Scheduling. Simulation

results for 100 allocations involving three clients, A, B, andC, with a 3 : 2 : 1 allocation. The dashed lines represent ideal

proportional-share behavior. (a) Allocation by randomized

lottery scheduler shows significant variability. (b) Allocation

by deterministic stride scheduler exhibits precise periodic be-

havior: A, B, A, A, B, C.

10

0 20 40 60 80 100
0

5

10

E
rr

or
 (

qu
an

ta
)

(b) Stride 7:3

0 200 400 600 800 1000
0

5

10

M
ea

n
E

rr
or

 (
qu

an
ta

)

(a) Lottery 7:3

0 20 40 60 80 100

Time (quanta)

0

5

10

E
rr

or
 (

qu
an

ta
)

(d) Stride 19:1

0 200 400 600 800 1000

Time (quanta)

0

5

10

M
ea

n
E

rr
or

 (
qu

an
ta

)

(c) Lottery 19:1

Figure 9: Throughput Accuracy. Simulation results for two clients with 7 : 3 (top) and 19 : 1 (bottom) ticket ratios over 1000

allocations. Only the first 100 quanta are shown for the stride scheduler, since its quantization error is deterministic and periodic.

(a) Mean lottery scheduler error, averaged over 1000 separate 7 : 3 runs. (b) Stride scheduler error for a single 7 : 3 run. (c) Mean

lottery scheduler error, averaged over 1000 separate 19 : 1 runs. (d) Stride scheduler error for a single 19 : 1 run.

11

Figure 9 plots the absolute error7 that results from
simulating two clients under both lottery scheduling and
stride scheduling. The data depicted is representative
of our simulation results over a large range of pairwise
ratios. Figure 9(a) shows the mean error averaged over
1000 separate lottery scheduler runs with a 7 : 3 ticket
ratio. As expected, the error increases slowly with na,
indicating that accuracy steadily improves when error
is measured as a percentage of na. Figure 9(b) shows
the error for a single stride scheduler run with the same
7 : 3 ticket ratio. As expected, the error never exceeds
a single quantum, and follows a deterministic pattern
with period 10. The error drops to zero at the end of
each complete period, corresponding to a precise 7 : 3
allocation. Figures 9(c) and 9(d) present data for similar
experiments involving a larger 19 : 1 ticket ratio.

5.2 Dynamic Ticket Allocations

Figure 10 plots the absolute error that results from
simulating two clients under both lottery scheduling and
stride scheduling with rapidly-changing dynamic ticket
allocations. This data is representative of simulation re-
sults over a large range of pairwise ratios and a variety
of dynamic modification techniques. For easy compar-
ison, the average dynamic ticket ratios are identical to
the static ticket ratios used in Figure 9.

The notation [A,B] indicates a random ticket allo-
cation that is uniformly distributed from A to B. New,
randomly-generated ticket allocations were dynamically
assigned every other quantum. The client modify() oper-
ation was executed for each change under stride schedul-
ing; no special actions were necessary under lottery
scheduling. To compute error values, specified allo-
cations were determined incrementally. Each client’s
specified allocation was advanced by t=T on every quan-
tum, where t is the client’s current ticket allocation, andT is the current ticket total.

Figure 10(a) shows the mean error averaged over 1000
separate lottery scheduler runs with a [2,12] : 3 ticket ra-
tio. Despite the dynamic changes, the mean error is
nearly the same as that measured for the static 7 : 3 ratio
depicted in Figure 9(a). Similarly, Figure 10(b) shows
the error for a single stride scheduler run with the same7In this case the relative and absolute errors are identical, since
there are only two clients.

dynamic [2,12] : 3 ratio. The error never exceeds a sin-
gle quantum, although it is much more erratic than the
periodic pattern exhibited for the static 7 : 3 ratio in Fig-
ure 9(b). Figures 10(c) and 10(d) present data for similar
experiments involving a larger dynamic 190 : [5,15] ra-
tio. The results for this allocation are comparable to
those measured for the static 19 : 1 ticket ratio depicted
in Figures 9(c) and 9(d).

Overall, the error measured under both lottery
scheduling and stride scheduling is largely unaffected
by dynamic ticket modifications. This suggests that both
mechanisms are well-suited to dynamic environments.
However, stride scheduling is clearly more accurate in
both static and dynamic environments.

5.3 Response Time Variability

Another important performance metric is response time,
which we measure as the elapsed time from a client’s
completion of one quantum up to and including its com-
pletion of another. Under randomized lottery schedul-
ing, client response times have a geometric distribution.
The expected number of lotteries na that a client must
wait before its first win is E[na] = 1=p, with variance�2na = (1 � p)=p2. Deterministic stride scheduling
exhibits dramatically less response-time variability.

Figures 11 and 12 present client response time distri-
butions under both lottery scheduling and stride schedul-
ing. Figure 11 shows the response times that result from
simulating two clients with a 7 : 3 ticket ratio for one mil-
lion allocations. The stride scheduler distributions are
very tight, while the lottery scheduler distributions are
geometric with long tails. For example, the client with
the smaller allocation had a maximum response time of
4 quanta under stride scheduling, while the maximum
response time under lottery scheduling was 39.

Figure 12 presents similar data for a larger 19 : 1 ticket
ratio. Although there is little difference in the response
time distributions for the client with the larger allocation,
the difference is enormous for the client with the smaller
allocation. Under stride scheduling, virtually all of the
response times were exactly 20 quanta. The lottery
scheduler produced geometrically-distributed response
times ranging from 1 to 194 quanta. In this case, the
standard deviation of the stride scheduler’s distribution
is three orders of magnitude smaller than the standard
deviation of the lottery scheduler’s distribution.

12

0 200 400 600 800 1000
0

5

10

E
rr

or
 (

qu
an

ta
)

(b) Stride [2,12]:3

0 200 400 600 800 1000
0

5

10

M
ea

n
E

rr
or

 (
qu

an
ta

)

(a) Lottery [2,12]:3

0 200 400 600 800 1000

Time (quanta)

0

5

10

E
rr

or
 (

qu
an

ta
)

(d) Stride 190:[5,15]

0 200 400 600 800 1000

Time (quanta)

0

5

10

M
ea

n
E

rr
or

 (
qu

an
ta

)

(c) Lottery 190:[5,15]

Figure 10: Throughput Accuracy – Dynamic Allocations. Simulation results for two clients with [2,12] : 3 (top) and

190 : [5,15] (bottom) ticket ratios over 1000 allocations. The notation [A,B] indicates a random ticket allocation that is uniformly

distributed from A to B. Random ticket allocations were dynamically updated every other quantum. (a) Mean lottery scheduler

error, averaged over 1000 separate [2,12] : 3 runs. (b) Stride scheduler error for a single [2,12] : 3 run. (c) Mean lottery scheduler

error, averaged over 1000 separate 190 : [5,15] runs. (d) Stride scheduler error for a single 190 : [5,15] run.

13

0 5 10 15 20
0

100

200

300

400

500

F
re

qu
en

cy
 (

th
ou

sa
nd

s)

(b) Stride - 7

0 5 10 15 20

Response Time (quanta)

0

50

100

150

200

F
re

qu
en

cy
 (

th
ou

sa
nd

s)

(d) Stride - 3

0 5 10 15 20
0

100

200

300

400

500

F
re

qu
en

cy
 (

th
ou

sa
nd

s)

(a) Lottery - 7

0 5 10 15 20

Response Time (quanta)

0

50

100

150

200

F
re

qu
en

cy
 (

th
ou

sa
nd

s)

(c) Lottery - 3

Figure 11: Response Time Distribution. Simulation results for two clients with a 7 : 3 ticket ratio over one million

allocations. (a) Client with 7 tickets under lottery scheduling: � = 1:43, � = 0:78. (b) Client with 7 tickets under stride

scheduling: � = 1:43, � = 0:49. (c) Client with 3 tickets under lottery scheduling: � = 3:33, � = 2:79. (d) Client with 3

tickets under stride scheduling: � = 3:33, � = 0:47.

14

0 5 10 15 20
0

200

400

600

800

1000

F
re

qu
en

cy
 (

th
ou

sa
nd

s)
(b) Stride - 19

0 20 40 60 80 100

Response Time (quanta)

0

20

40

60

80

100

F
re

qu
en

cy
 (

th
ou

sa
nd

s)

(d) Stride - 1

0 5 10 15 20
0

200

400

600

800

1000

F
re

qu
en

cy
 (

th
ou

sa
nd

s)

(a) Lottery - 19

0 20 40 60 80 100

Response Time (quanta)

0

2

4

6

8

10

F
re

qu
en

cy
 (

th
ou

sa
nd

s)

(c) Lottery - 1

Figure 12: Response Time Distribution. Simulation results for two clients with a 19 : 1 ticket ratio over one million

allocations. (a) Client with 19 tickets under lottery scheduling: � = 1:05, � = 0:24. (b) Client with 19 tickets under stride

scheduling: � = 1:05, � = 0:22. (c) Client with 1 ticket under lottery scheduling: � = 20:13, � = 19:64. (d) Client with 1

ticket under stride scheduling: � = 20:00, � = 0:01.

15

5.4 Hierarchical Stride Scheduling

As discussed in Section 4, stride scheduling can produce
an absolute error of O(nc) for skewed ticket distribu-
tions, where nc is the number of clients. In contrast,
hierarchical stride scheduling bounds the absolute er-
ror to O(lg nc). As a result, response-time variability
can be significantly reduced under hierarchical stride
scheduling.

Figure 13 presents client response time distributions
under both hierarchical stride scheduling and ordinary
stride scheduling. Eight clients with a 7 : 1 : : : : : 1 ticket
ratio were simulated for one million allocations. Ex-
cluding the very first allocation, the response time for
each of the low-throughput clients was always 14, under
both schedulers. Thus we only present response time
distributions for the high-throughput client.

The ordinary stride scheduler runs the high-
throughput client for 7 consecutive quanta, and then
runs each of the low-throughput clients for one quan-
tum. The hierarchical stride scheduler interleaves the
clients, resulting in a tighter distribution. In this case,
the standard deviation of the ordinary stride scheduler’s
distribution is more than twice as large as that for the
hierarchical stride scheduler. We observed a maximum
absolute error of 4 quanta for the high-throughput client
under ordinary stride scheduling, and only 1.5 quanta
under hierarchical stride scheduling.

6 Prototype Implementations

We implemented two prototype stride schedulers by
modifying the Linux 1.1.50 kernel on a 25MHz i486-
based IBM Thinkpad 350C. The first prototype enables
proportional-share control over processor time, and the
second enables proportional-share control over network
transmission bandwidth.

6.1 Process Scheduler

The goal of our first prototype was to permit
proportional-share allocation of processor time to con-
trol relative computation rates. We primarily changed
the kernel code that handles process scheduling, switch-
ing from a conventional priority scheduler to a stride-
based algorithm with a scheduling quantum of 100 mil-
liseconds. Ticket allocations can be specified via a new

0 2 4 6 8 10
0

100

200

300

400

500

F
re

qu
en

cy
 (

th
ou

sa
nd

s)

0 2 4 6 8 10

Response Time (quanta)

0

100

200

300

400

500

F
re

qu
en

cy
 (

th
ou

sa
nd

s)

Figure 13: Hierarchical Stride Scheduling. Response

time distributions for a simulation of eight clients with a

7 : 1 : : : : : 1 ticket ratio over one million allocations. Re-

sponse times are shown only for the client with 7 tickets. (a)

Hierarchical Stride Scheduler: � = 2:00, � = 1:07. (b)

Ordinary Stride Scheduler: � = 2:00, � = 2:45.

16

0 2 4 6 8 10

Allocated Ratio

0

2

4

6

8

10

O
bs

er
ve

d
It

er
at

io
n

R
at

io

Figure 14: CPU Rate Accuracy. For each allocation

ratio, the observed iteration ratio is plotted for each of three

30 second runs. The gray line indicates the ideal where the

two ratios are identical. The observed ratios are within 1% of

the ideal for all data points.

stride cpu set tickets() system call. We did not
implement support for higher-level abstractions such as
ticket transfers and currencies. Fewer than 300 lines of
source code were added or modified to implement our
changes.

Our first experiment tested the accuracy with which
our prototype could control the relative execution rate
of computations. Each point plotted in Figure 14 indi-
cates the relative execution rate that was observed for
two processes running the compute-bound arith inte-
ger arithmetic benchmark [Byt91]. Three thirty-second
runs were executed for each integral ratio between one
and ten. In all cases, the observed ratios are within 1%
of the ideal. We also ran experiments involving higher
ratios, and found that the observed ratio for a 20 : 1 al-
location ranged from 19.94 to 20.04, and the observed
ratio for a 50 : 1 allocation ranged from 49.93 to 50.44.

Our next experiment examined the scheduler’s behav-
ior over shorter time intervals. Figure 15 plots average
iteration counts over a series of 2-second time windows
during a single 60 second execution with a 3 : 1 alloca-
tion. The two processes remain close to their allocated

0 20 40 60

Time (sec)

0

500

1000

1500

2000

2500

A
ve

ra
ge

 I
te

ra
ti

on
s

(p
er

 s
ec

)

Figure 15: CPU Fairness Over Time. Two processes

executing the compute-bound arith benchmark with a 3 : 1

ticket allocation. Averaged over the entire run, the two pro-

cesses executed 2409.18 and 802.89 iterations/sec., for an

actual ratio of 3.001:1.

ratios throughout the experiment. Note that if we used a
10 millisecond time quantum instead of the scheduler’s
100 millisecond quantum, the same degree of fairness
would be observed over a series of 200 millisecond time
windows.

To assess the overhead imposed by our prototype
stride scheduler, we ran performance tests consisting
of concurrent arith benchmark processes. Overall, we
found that the performance of our prototype was com-
parable to that of the standard Linux process scheduler.
Compared to unmodified Linux, groups of 1, 2, 4, and
8 arith processes each completed fewer iterations un-
der stride scheduling, but the difference was always less
than 0.2%.

However, neither the standard Linux scheduler nor
our prototype stride scheduler are particularly efficient.
For example, the Linux scheduler performs a linear scan
of all processes to find the one with the highest priority.
Our prototype also performs a linear scan to find the
process with the minimum pass; an O(lgnc) time im-
plementation would have required substantial changes
to existing kernel code.

17

6.2 Network Device Scheduler

The goal of our second prototype was to permit
proportional-share control over transmission bandwidth
for network devices such as Ethernet and SLIP inter-
faces. Such control would be particularly useful for
applications such as concurrent ftp file transfers, and
concurrenthttpWeb server replies. For example, many
Web servers have relatively slow connections to the In-
ternet, resulting in substantial delays for transfers of
large objects such as graphical images. Given control
over relative transmission rates, a Web server could pro-
vide different levels of service to concurrent clients. For
example, tickets8 could be issued by servers based upon
the requesting user, machine, or domain. Commercial
servers could even sell tickets to clients demanding faster
service.

We primarily changed the kernel code that han-
dles generic network device queueing. This involved
switching from conventional FIFO queueing to stride-
based queueing that respects per-socket ticket alloca-
tions. Ticket allocations can be specified via a new
SO TICKETS option to the setsockopt() system call.
Although not implemented in our prototype, a more
complete system should also consider additional forms
of admission control to manage other system resources,
such as network buffers. Fewer than 300 lines of source
code were added or modified to implement our changes.

Our first experiment tested the prototype’s ability to
control relative network transmission rates on a local
area network. We used the ttcp network test program9
[TTC91] to transfer fabricated buffers from an IBM
Thinkpad 350C running our modified Linux kernel, to a8To be included with http requests, tickets would require an
external data representation. If security is a concern, cryptographic
techniques could be employed to prevent forgery and theft.9We made a few minor modifications to the standard ttcp bench-
mark. Other than extensions to specify ticket allocations and facili-
tate coordinated timing, we also decreased the value of a hard-coded
delay constant. This constant is used to temporarily put a trans-
mitting process to sleep when it is unable to write to a socket due
to a lack of buffer space (ENOBUFS). Without this modification, the
observed throughput ratios were consistently lower than specified
allocations, with significant differences for large ratios. With the
larger delay constant, we believe that the low-throughput client is
able to continue sending packets while the high-throughput client is
sleeping, distorting the intended throughput ratio. Of course, chang-
ing the kernel interface to signal a process when more buffer space
becomes available would probably be preferable to polling.

0 2 4 6 8 10

Allocated Ratio

0

2

4

6

8

10

O
bs

er
ve

d
T

hr
ou

gh
pu

t
R

at
io

Figure 16: Ethernet UDP Rate Accuracy. For each

allocation ratio, the observed data transmission ratio is plotted

for each of three runs. The gray line indicates the ideal where

the two ratios are identical. The observed ratios are within

5% of the ideal for all data points.

DECStation 5000/133 running Ultrix. Both machines
were on the same physical subnet, connected via a
10Mbps Ethernet that also carried network traffic for
other users.

Each point plotted in Figure 16 indicates the rela-
tive UDP data transmission rate that was observed for
two processes running the ttcp benchmark. Each ex-
periment started with both processes on the sending ma-
chine attempting to transmit 4K buffers, each containing
8Kbytes of data, for a total 32Mbyte transfer. As soon
as one process finished sending its data, it terminated the
other process via a Unix signal. Metrics were recorded
on the receiving machine to capture end-to-end applica-
tion throughput. The observed ratios are very accurate;
all data points are within 5% of the ideal. For larger
ticket ratios, the observed throughput ratio is slightly
lower than the specified allocation. For example, a 20 : 1
allocation resulted in actual throughput ratios ranging
from 18.51 : 1 to 18.77 : 1.

To assess the overhead imposed by our prototype,
we ran performance tests consisting of concurrent ttcp
benchmark processes. Overall, we found that the perfor-
mance of our prototype was comparable to that of stan-
dard Linux. Although the prototype increases the length

18

of the critical path for sending a network packet, we were
unable to observe any significant difference between un-
modified Linux and stride scheduling. We believe that
the small additional overhead of stride scheduling was
masked by the variability of external network traffic from
other users; individual differences were in the range of�5%.

7 Related Work

We independently developed stride scheduling as a de-
terministic alternative to the randomized selection as-
pect of lottery scheduling [Wal94]. We then discov-
ered that the core allocation algorithm used in stride
scheduling is nearly identical to elements of rate-based
flow-control algorithms designed for packet-switched
networks [Dem90, Zha91, ZhK91, Par93]. Despite the
relevance of this networking research, to the best of our
knowledge it has not been discussed in the processor
scheduling literature. In this section we discuss a va-
riety of related scheduling work, including rate-based
network flow control, deterministic proportional-share
schedulers, priority schedulers, real-time schedulers,
and microeconomic schedulers.

7.1 Rate-Based Network Flow Control

Our basic stride scheduling algorithm is very similar
to Zhang’s VirtualClock algorithm for packet-switched
networks [Zha91]. In this scheme, a network switch
orders packets to be forwarded through outgoing links.
Every packet belongs to a client data stream, and each
stream has an associated bandwidth reservation. A vir-
tual clock is assigned to each stream, and each of its
packets is stamped with its current virtual time upon ar-
rival. With each arrival, the virtual clock advances by a
virtual tick that is inversely proportional to the stream’s
reserved data rate. Using our stride-oriented terminol-
ogy, a virtual tick is analogous to a stride, and a virtual
clock is analogous to a pass value.

The VirtualClock algorithm is closely related to the
weighted fair queueing (WFQ) algorithm developed by
Demers, Keshav, and Shenker [Dem90], and Parekh and
Gallager’s equivalent packet-by-packet generalized pro-
cessor sharing (PGPS) algorithm [Par93]. One differ-
ence that distinguishes WFQ and PGPS from Virtual-

Clock is that they effectively maintain a global virtual
clock. Arriving packets are stamped with their stream’s
virtual tick plus the maximum of their stream’s virtual
clock and the global virtual clock. Without this modi-
fication, an inactive stream can later monopolize a link
as its virtual clock caught up to those of active streams;
such behavior is possible under the VirtualClock algo-
rithm [Par93].

Our stride scheduler’s use of a global pass vari-
able is based on the global virtual clock employed by
WFQ/PGPS, which follows an update rule that produces
a smoothly varying global virtual time. Before we be-
came aware of the WFQ/PGPS work, we used a simpler
global pass update rule: global pass was set to the pass
value of the client that currently owns the resource. To
see the difference between these approaches, consider
the set of minimum pass values over time in Figure 2.
Although the average pass value increase per quantum
is 1, the actual increases occur in non-uniform steps.
We adopted the smoother WFQ/PGPS virtual time rule
to improve the accuracy of pass updates associated with
dynamic modifications.

To the best of our knowledge, our work on stride
scheduling is the first cross-application of rate-based
network flow control algorithms to scheduling other re-
sources such as processor time. New techniques were
required to support dynamic changes and higher-level
abstractions such as ticket transfers and currencies. Our
hierarchical stride scheduling algorithm is a novel recur-
sive application of the basic technique that exhibits im-
proved throughput accuracy and reduced response time
variability compared to prior schemes.

7.2 Proportional-Share Schedulers

Several other deterministic approaches have recently
been proposed for proportional-share processor schedul-
ing [Fon95, Mah95, Sto95]. However, all require expen-
sive operations to transform client state in response to
dynamic changes. This makes them less attractive than
stride scheduling for supporting dynamic or distributed
environments. Moreover, although each algorithm is ex-
plicitly compared to lottery scheduling, none provides
efficient support for the flexible resource management
abstractions introduced with lottery scheduling.

Stoica and Abdel-Wahab have devised an interesting
scheduler using a deterministic generator that employs

19

a bit-reversed counter in place of the random number
generator used by lottery scheduling [Sto95]. Their al-
gorithm results in an absolute error for throughput that
is O(lgna), where na is the number of allocations. Al-
locations can be performed efficiently in O(lgnc) time
using a tree-based data structure, wherenc is the number
of clients. However, dynamic modifications to the set
of active clients or their allocations require executing a
relatively complex “restart” operation with O(nc) time
complexity. Also, no support is provided for fractional
or nonuniform quanta.

Maheshwari has developed a deterministic charge-
based proportional-share scheduler [Mah95]. Loosely
based on an analogy to digitized line drawing, this
scheme has a maximum relative throughput error of
one quantum, and also supports fractional quanta. Al-
though efficient in many cases, allocation has a worst-
case O(nc) time complexity, where nc is the number
of clients. Dynamic modifications require executing a
“refund” operation with O(nc) time complexity.

Fong and Squillante have introduced a general
scheduling approach called time-function scheduling
(TFS) [Fon95]. TFS is intended to provide differen-
tial treatment of job classes, where specific throughput
ratios are specified across classes, while jobs within each
class are scheduled in a FCFS manner. Time functions
are used to compute dynamic job priorities as a func-
tion of the time each job has spent waiting since it was
placed on the run queue. Linear functions result in pro-
portional sharing: a job’s value is equal to its waiting
time multipled by its job-class slope, plus a job-class
constant. An allocation is performed by selecting the
job with the maximum time-function value. A naive
implementation would be very expensive, but since jobs
are grouped into classes, allocation can be performed inO(n) time, where n is the number of distinct classes. If
time-function values are updated infrequently compared
to the scheduling quantum, then a priority queue can be
used to reduce the allocation cost to O(lgn), with anO(n lgn) cost to rebuild the queue after each update.

When Fong and Squillante compared TFS to lottery
scheduling, they found that although throughput accu-
racy was comparable, the waiting time variance of low-
throughput tasks was often several orders of magnitude
larger under lottery scheduling. This observation is con-
sistent with our simulation results involving response

time, presented in Section 5. TFS also offers the poten-
tial to specify performance goals that are more general
than proportional sharing. However, when proportional
sharing is the goal, stride scheduling has advantages in
terms of efficiency and accuracy.

7.3 Priority Schedulers

Conventional operating systems typically employ prior-
ity schemes for scheduling processes [Dei90, Tan92].
Priority schedulers are not designed to provide
proportional-share control over relative computation
rates, and are often ad-hoc. Even popular priority-based
approaches such as decay-usage scheduling are poorly
understood, despite the fact that they are employed by
numerous operating systems, including Unix [Hel93].

Fair share schedulers allocate resources so that users
get fair machine shares over long periods of time
[Hen84, Kay88, Hel93]. These schedulers are layered
on top of conventional priority schedulers, and dynam-
ically adjust priorities to push actual usage closer to
entitled shares. The algorithms used by these systems
are generally complex, requiring periodic usage moni-
toring, complicated dynamic priority adjustments, and
administrative parameter setting to ensure fairness on a
time scale of minutes.

7.4 Real-Time Schedulers

Real-time schedulers are designed for time-critical sys-
tems [Bur91]. In these systems, which include many
aerospace and military applications, timing require-
ments impose absolute deadlines that must be met to
ensure correctness and safety; a missed deadline may
have dire consequences. One of the most widely
used techniques in real-time systems is rate-monotonic
scheduling, in which priorities are statically assigned
as a monotonic function of the rate of periodic tasks
[Liu73, Sha91]. The importance of a task is not re-
flected in its priority; tasks with shorter periods are sim-
ply assigned higher priorities. Bounds on total processor
utilization (ranging from 69% to nearly 100%, depend-
ing on various assumptions) ensure that rate monotonic
scheduling will meet all task deadlines. Another pop-
ular technique is earliest deadline scheduling, which
always schedules the task with the closest deadline first.
The earliest deadline approach permits high processor

20

utilization, but has increased runtime overhead due to
the use of dynamic priorities; the task with the nearest
deadline varies over time.

In general, real-time schedulers depend upon very
restrictive assumptions, including precise static knowl-
edge of task execution times and prohibitions on task
interactions. In addition, limitations are placed on pro-
cessor utilization, and even transient overloads are disal-
lowed. In contrast, the proportional-share model used by
stride scheduling and lottery scheduling is designed for
more general-purpose environments. Task allocations
degrade gracefully in overload situations, and active
tasks proportionally benefit from extra resources when
some allocations are not fully utilized. These proper-
ties facilitate adaptive applications that can respond to
changes in resource availability.

Mercer, Savage, and Tokuda recently introduced
a higher-level processor capacity reserve abstraction
[Mer94] for measuring and controlling processor usage
in a microkernel system with an underlying real-time
scheduler. Reserves can be passed across protection
boundaries during interprocess communication, with an
effect similar to our use of ticket transfers. While this ap-
proach works well for many multimedia applications, its
reliance on resource reservations and admission control
is still more restrictive than the general-purpose model
that we advocate.

7.5 Microeconomic Schedulers

Microeconomic schedulers are based on metaphors to
resource allocation in real economic systems. Money
encapsulates resource rights, and a price mechanism
is used to allocate resources. Several microeconomic
schedulers [Dre88, Mil88, Fer88, Fer89, Wal89, Wal92,
Wel93] use auctions to determine prices and allocate re-
sources among clients that bid monetary funds. Both the
escalator algorithm proposed for uniprocessor schedul-
ing [Dre88] and the distributed Spawn system [Wal92]
rely upon auctions in which bidders increase their bids
linearly over time. Since auction dynamics can be unex-
pectedly volatile, auction-based approaches sometimes
fail to achieve resource allocations that are proportional
to client funding. The overhead of bidding also limits
the applicability of auctions to relatively coarse-grained
tasks. Other market-based approaches that do not rely
upon auctions have also been applied to managing pro-

cessor and memory resources [Ell75, Har92, Che93].
Stride scheduling and lottery scheduling are compat-

ible with a market-based resource management philoso-
phy. Our mechanisms for proportional sharing provide a
convenient substrate for pricing individual time-shared
resources in a computational economy. For example,
tickets are analogous to monetary income streams, and
the number of tickets competing for a resource can be
viewed as its price. Our currency abstraction for flexi-
ble resource management is also loosely borrowed from
economics.

8 Conclusions

We have presented stride scheduling, a determinis-
tic technique that provides accurate control over rel-
ative computation rates. Stride scheduling also effi-
ciently supports the same flexible, modular resource
management abstractions introduced by lottery schedul-
ing. Compared to lottery scheduling, stride scheduling
achieves significantly improved accuracy over relative
throughput rates, with significantly less response time
variability. However, lottery scheduling is conceptu-
ally simpler than stride scheduling. For example, stride
scheduling requires careful state updates for dynamic
changes, while lottery scheduling is effectively stateless.

The core allocation mechanism used by stride
scheduling is based on rate-based flow-control algo-
rithms for networks. One contribution of this paper is
a cross-application of these algorithms to the domain of
processor scheduling. New techniques were developed
to support dynamic modifications to client allocations
and resource right transfers between clients. We also in-
troduced a new hierarchical stride scheduling algorithm
that exhibits improved throughput accuracy and lower
response time variability compared to prior schemes.

Acknowledgements

We would like to thank Kavita Bala, Dawson Engler,
Paige Parsons, and Lyle Ramshaw for their many helpful
comments. Thanks to Tom Rodeheffer for suggesting
the connection between our work and rate-based flow-
control algorithms in the networking literature. Special
thanks to Paige for her help with the visual presentation
of stride scheduling.

21

References

[Bur91] A. Burns. “Scheduling Hard Real-Time Systems:
A Review,” Software Engineering Journal, May
1991.

[Byt91] Byte Unix Benchmarks, Version 3, 1991. Avail-
able via Usenet and anonymous ftp from many
locations, including gatekeeper.dec.com.

[Che93] D. R. Cheriton and K. Harty. “A Market Approach
to Operating System Memory Allocation,” Work-
ing Paper, Computer Science Department, Stan-
ford University, June 1993.

[Cor90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms, MIT Press, 1990.

[Dei90] H. M. Deitel. Operating Systems, Addison-
Wesley, 1990.

[Dem90] A. Demers, S. Kehav, and S. Shenker. “Anal-
ysis and Simulation of a Fair Queueing Algo-
rithm,” Internetworking: Research and Experi-
ence, September 1990.

[Dre88] K. E. Drexler and M. S. Miller. “Incentive En-
gineering for Computational Resource Manage-
ment” in The Ecology of Computation, B. Huber-
man (ed.), North-Holland, 1988.

[Ell75] C. M. Ellison. “The Utah TENEX Scheduler,”
Proceedings of the IEEE, June 1975.

[Fer88] D. Ferguson, Y. Yemini, and C. Nikolaou. “Mi-
croeconomic Algorithms for Load-Balancing in
Distributed Computer Systems,” International
Conference on Distributed Computer Systems,
1988.

[Fer89] D. F. Ferguson. “The Application of Microeco-
nomics to the Design of Resource Allocation and
Control Algorithms,” Ph.D. thesis, Columbia Uni-
versity, 1989.

[Fon95] L. L. Fong and M. S. Squillante. “Time-Functions:
A General Approach to Controllable Resource
Management,” Working Draft, IBM Research Di-
vision, T.J. Watson Research Center, Yorktown
Heights, NY, March 1995.

[Har92] K. Harty and D. R. Cheriton. “Application-
Controlled Physical Memory using External Page-
Cache Management,” Fifth International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems, October 1992.

[Hel93] J. L. Hellerstein. “Achieving Service Rate Objec-
tives with Decay Usage Scheduling,” IEEE Trans-
actions on Software Engineering, August 1993.

[Hen84] G. J. Henry. “The Fair Share Scheduler,” AT&T
Bell Laboratories Technical Journal, October
1984.

[Kay88] J. Kay and P. Lauder. “A Fair Share Scheduler,”
Communications of the ACM, January 1988.

[Liu73] C. L. Liu and J. W. Layland. “Scheduling Algo-
rithms for Multiprogramming in a Hard Real-Time
Environment,” Journal of the ACM, January 1973.

[Mah95] U. Maheshwari. “Charge-Based Proportional
Scheduling,” Working Draft, MIT Laboratory for
Computer Science, Cambridge, MA, February
1995.

[Mer94] C. W. Mercer, S. Savage, and H. Tokuda. “Proces-
sor Capacity Reserves: Operating System Sup-
port for Multimedia Applications,” Proceedings
of the IEEE International Conference on Multi-
media Computing and Systems, May 1994.

[Mil88] M. S. Miller and K. E. Drexler. “Markets and Com-
putation: Agoric Open Systems,” in The Ecol-
ogy of Computation, B. Huberman (ed.), North-
Holland, 1988.

[Par93] A. K. Parekh and R. G. Gallager. “A Generalized
Processor Sharing Approach to Flow Control in
Integrated Services Networks: The Single-Node
Case,” IEEE/ACM Transactions on Networking,
June 1993.

[Pug90] W. Pugh. “Skip Lists: A Probabilistic Alternative
to Balanced Trees,” Communications of the ACM,
June 1990.

[Sha91] L. Sha, M. H. Klein, and J. B. Goodenough. “Rate
Monotonic Analysis for Real-Time Systems,” in
Foundations of Real-Time Computing: Schedul-
ing and Resource Management, A. M. van Tilborg
and G. M. Koob (eds.), Kluwer Academic Publish-
ers, 1991.

[Sto95] I. Stoica and H. Abdel-Wahab. “A New Approach
to Implement Proportional Share Resource Al-
location,” Technical Report 95-05, Department
of Computer Science, Old Dominion University,
Norfolk, VA, April 1995.

[Tan92] A. S. Tanenbaum. Modern Operating Systems,
Prentice Hall, 1992.

22

[TTC91] TTCP benchmarking tool. SGI version, 1991.
Originally developed at the US Army Ballis-
tics Research Lab (BRL). Available via anony-
mous ftp from many locations, including
ftp.sgi.com.

[Wal89] C. A. Waldspurger. “A Distributed Computational
Economy for Utilizing Idle Resources,” Master’s
thesis, MIT, May 1989.

[Wal92] C. A. Waldspurger, T. Hogg, B. A. Huberman, J.
O. Kephart, and W. S. Stornetta. “Spawn: A Dis-
tributed Computational Economy,” IEEE Trans-
actions on Software Engineering, February 1992.

[Wal94] C. A. Waldspurger and W. E. Weihl. “Lot-
tery Scheduling: Flexible Proportional-Share Re-
source Management,” Proceedings of the First
Symposium on Operating Systems Design and Im-
plementation, November 1994.

[Wal95] C. A. Waldspurger. “Lottery and Stride Schedul-
ing: Flexible Proportional-Share Resource Man-
agement,” Ph.D. thesis, MIT, 1995 (to appear).

[Wel93] M. P. Wellman. “A Market-Oriented Programming
Environment and its Application to Distributed
Multicommodity Flow Problems,” Journal of Ar-
tificial Intelligence Research, August 1993.

[Zha91] L. Zhang. “Virtual Clock: A New Traffic Control
Algorithm for Packet Switching Networks,” ACM
Transactions on Computer Systems, May 1991.

[ZhK91] H. Zhang and S. Kehav. “Comparison of Rate-
Based Service Disciplines,” Proceedings of SIG-
COMM ’91, September 1991.

A Fixed-Point Stride Representation

The precision of relative rates that can be achieved de-
pends on both the value of stride1 and the relative ratios
of client ticket allocations. For example, with stride1
= 220, and a maximum ticket allocation of 210 tickets,
ratios are represented with 10 bits of precision. Thus,
ratios close to unity resulting from allocations that differ
by only one part per thousand, such as 1001 : 1000, can
be supported.

Since stride1 is a large integer, stride values will also
be large for clients with small allocations. Since pass
values are monotonically increasing, they will eventually
overflow the machine word size after a large number of
allocations. For a machine with 64-bit integers, this is
not a practical problem. For example, with stride1 = 220
and a worst-case client tickets = 1, approximately 244
allocations can be performed before overflow occurs.
At one allocation per millisecond, centuries of real time
would elapse before an overflow.

For a machine with 32-bit integers, the pass values
associated with all clients can be adjusted by subtract-
ing the minimum pass value from all clients whenever
an overflow is detected. Alternatively, such adjustments
can periodically be made after a fixed number of allo-
cations. For example, with stride1 = 220, a conservative
adjustment period would be a few thousand allocations.
Perhaps the most straightforward approach is to simply
use a 64-bit integer type if one is available. Our pro-
totype implementation makes use of the 64-bit “long
long” integer type provided by the GNU C compiler.

23

