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Motivation

Cache performance highly non-linear
Benefit varies widely by workload

Opportunity: dynamic cache management
— Efficient sizing, allocation, and scheduling
— Improve performance, isolation, QoS

Problem: online modeling expensive
— Too resource-intensive to be broadly practical
— Exacerbated by increasing cache sizes
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Modeling Cache Performance
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 Miss Ratio Curve (MRC)

— Performance as f(size)
— Working set knees
— Inform allocation policy

Reuse distance

— Unique intervening blocks
between use and reuse

— LRU, stack algorithms



MRC Algorithm Research

@ Sseparate simulation SHARDS _
per cache size spatial hashing
UMON-DSS O(1), O(N)
Mattson Stack Algorithm Kessler, Hill & Wood  hw set sampling paARDA
single pass set, time sampling parallelism
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Space, Time Complexity
N = total refs, M = unique refs
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Key ldea

* Track only a small subset of blocks
— Filter input to existing algorithm
— Run full algorithm, using only sampled blocks
— Cheap/accurate enough for practical online MRCs?

 SHARDS approximation algorithm
— Randomized spatial sampling
— Uses hashing to capture all reuses of same block
— High performance in tiny constant footprint
— Surprisingly accurate MRCs



Spatially Hashed Sampling

randomize sample?

hash(L) mod P

sampled unsampled
il —__  samplingrateR=T/P
. - subset inclusion property
0 T P maintained as R is lowered

adjustable threshold
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Basic SHARDS

randomize sample? compute distance scale up
yes Standard
L. —>  Reuse Distance —> +R
S g Algorithm
no l
hash(L.) mod P
skip

Each sample statistically represents 1 /R blocks
Scale up reuse distances by same factor
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SHARDS in Constant Space

randomize sample? compute distance scale up

yes Standard
—>  Reuse Distance —> <R

/‘ Algorithm

sample set

hash(L.) mod P

evict samples to bound set size

lower threshold T=T__,
reducesrate R=T/P
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Example SHARDS MRCs

smeseey  ® BlOCk 1/O trace t04
— Exact MRC

Il — Production VM disk
— 69.5M refs, 5.2M unique

* Samplesizes,

— Vary from 128 to 32K
— S, 2 2K very accurate

* Small constant footprint
SHARDS,; adjustment
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Sampling Rate (R)

Dynamic Rate Adaptation
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e Adjust sampling rate
— Start with R=0.1
— Lower R as M increases
— Shape depends on trace

* Rescale histogram counts
— Discount evicted samples
— Correct relative weighting
— ScalebyR,., /R,



Experimental Evaluation

e Data collection

(QC/);EVX — SaaS caching analytics
— Remotely stream

" VMware vscsiStats

T\ * 124 trace files
Collector vAp < I s
T m }1 S e oo

— 106 week-long traces
| CloudPhysics customers
SN — 12 MSR and 6 FIU traces
SNIA IOTTA

e LRU, 16 KB block size

vCenter
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Exact MRCs vs. SHARDS
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— Smax = 8K - -+ exact MRC
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Error Analysis

 Mean Absolute Error (MAE)
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— Average over all cache sizes
Full set of 124 traces
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Memory Usage (MB)
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Full set of 124 traces
Sequential PARDA

Basic SHARDS

— Modified PARDA

— Memory = R x baseline
for larger traces

Fixed-size SHARDS

— New space-efficient code
— Constant 1 MB footprint



Processing Time
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Counter Stacks Comparison

Algorithm Memory | Throughput
(MB) (Mrefs/sec)

Counter Stacks 80.0 0.0025
SHARDS S, .,,=32K 2.0 16.9 0.0026
SHARDS S, _,=8K 1.3 17.6 0.0061

* Quantitative
— Same merged MSR “master” trace
— Counter Stacks roughly 7x slower, 40—62x bigger
* Qualitative
— Counter Stacks checkpoints support splicing/merging
— SHARDS maintains block ids, generalizes to non-LRU
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Generalizing to Non-LRU Policies

* Many sophisticated replacement policies
— ARG, LIRS, CAR, CLOCK-Pro, ...
— Adaptive, frequency and recency
— No known single-pass MRC methods!

* Solution: efficient scaled-down simulation
— Filter using spatially hashed sampling
— Scale down simulated cache size by sampling rate
— Run full simulation at each cache size

e Surprisingly accurate results



Scaled-Down Simulation Examples
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Conclusions

* New SHARDS algorithm
— Approximate MRC in O(1) space, O(N) time
— Excellent accuracy in 1 MB footprint

* Practical online MRCs

— Even for memory-constrained drivers, firmware
— So lightweight, can run multiple instances

e Scaled-down simulation of non-LRU policies



Questions?

{carl,nohhyun,alex,irfan}@cloudphysics.com
Visit our poster
BoF 9-10pm tonight in Bayshore West

Potential academic and industry collaboration

Application areas include capacity planning,
dynamic partitioning, tuning, policies, ...

We’re also hiring!



