Efficient MRC Construction with SHARDS

Carl Waldspurger Nohhyun Park Alexander Garthwaite Irfan Ahmad

CloudPhysics, Inc.

USENIX Conference on File and Storage Technologies February 17, 2015

Motivation

- Cache performance highly non-linear
- Benefit varies widely by workload
- Opportunity: dynamic cache management
 - Efficient sizing, allocation, and scheduling
 - Improve performance, isolation, QoS
- Problem: online modeling expensive
 - Too resource-intensive to be broadly practical
 - Exacerbated by increasing cache sizes

Modeling Cache Performance

- Miss Ratio Curve (MRC)
 - Performance as f(size)
 - Working set knees
 - Inform allocation policy
- Reuse distance
 - Unique intervening blocks between use and reuse
 - LRU, stack algorithms

MRC Algorithm Research

Space, Time Complexity
N = total refs, M = unique refs

Key Idea

- Track only a small subset of blocks
 - Filter input to existing algorithm
 - Run full algorithm, using only sampled blocks
 - Cheap/accurate enough for practical online MRCs?
- SHARDS approximation algorithm
 - Randomized spatial sampling
 - Uses hashing to capture all reuses of same block
 - High performance in tiny constant footprint
 - Surprisingly accurate MRCs

Spatially Hashed Sampling

sampling rate R = T / P subset inclusion property maintained as R is lowered

Basic SHARDS

Each sample statistically represents 1/R blocks Scale up reuse distances by same factor

SHARDS in Constant Space

evict samples to bound set size

Example SHARDS MRCs

- Block I/O trace t04
 - Production VM disk
 - 69.5M refs, 5.2M unique
- Sample size s_{max}
 - Vary from 128 to 32K
 - $-s_{max}$ ≥ 2K very accurate
- Small constant footprint
- SHARDS_{adj} adjustment

Dynamic Rate Adaptation

- Adjust sampling rate
 - Start with R = 0.1
 - Lower R as M increases
 - Shape depends on trace
- Rescale histogram counts
 - Discount evicted samples
 - Correct relative weighting
 - Scale by R_{new} / R_{old}

Experimental Evaluation

- Data collection
 - SaaS caching analytics
 - Remotely stream
 VMware vscsiStats
- 124 trace files
 - 106 week-long traces
 CloudPhysics customers
 - 12 MSR and 6 FIU traces
 SNIA IOTTA
- LRU, 16 KB block size

Exact MRCs vs. SHARDS

Error Analysis

- Mean Absolute Error (MAE)
 - | exact approx |
 - Average over all cache sizes
- Full set of 124 traces
- Error $\propto 1/\sqrt{s_{max}}$
- MAE for $s_{max} = 8K$
 - 0.0027 median
 - 0.0171 worst-case

Memory Footprint

- Full set of 124 traces
- Sequential PARDA
- Basic SHARDS
 - Modified PARDA
 - Memory ≈ R × baseline for larger traces
- Fixed-size SHARDS
 - New space-efficient code
 - Constant 1 MB footprint

Processing Time

- Full set of 124 traces
- Sequential PARDA
- Basic SHARDS
 - Modified PARDA
 - R=0.001 speedup 41–1029×
- Fixed-size SHARDS
 - New space-efficient code
 - Overhead for evictions
 - $-S_{max}$ = 8K speedup 6–204×

Counter Stacks Comparison

Algorithm	Memory (MB)	Throughput (Mrefs/sec)	Error (MAE)
Counter Stacks	80.0	2.3	0.0025
SHARDS S _{max} =32K	2.0	16.9	0.0026
SHARDS S _{max} =8K	1.3	17.6	0.0061

Quantitative

- Same merged MSR "master" trace
- Counter Stacks roughly 7× slower, 40–62× bigger

Qualitative

- Counter Stacks checkpoints support splicing/merging
- SHARDS maintains block ids, generalizes to non-LRU

Generalizing to Non-LRU Policies

- Many sophisticated replacement policies
 - ARC, LIRS, CAR, CLOCK-Pro, ...
 - Adaptive, frequency and recency
 - No known single-pass MRC methods!
- Solution: efficient scaled-down simulation
 - Filter using spatially hashed sampling
 - Scale down simulated cache size by sampling rate
 - Run full simulation at each cache size
- Surprisingly accurate results

Scaled-Down Simulation Examples

ARC — MSR-Web Trace

CLOCK-Pro — Trace t04

Conclusions

- New SHARDS algorithm
 - Approximate MRC in O(1) space, O(N) time
 - Excellent accuracy in 1 MB footprint
- Practical online MRCs
 - Even for memory-constrained drivers, firmware
 - So lightweight, can run multiple instances
- Scaled-down simulation of non-LRU policies

Questions?

- {carl,nohhyun,alex,irfan}@cloudphysics.com
- Visit our poster
- BoF 9-10pm tonight in Bayshore West
- Potential academic and industry collaboration
- Application areas include capacity planning, dynamic partitioning, tuning, policies, ...
- We're also hiring!