Register Relocation
Flexible Contexts for Multithreading

Carl A. Waldspurger
William E. Welhl

Parallel Software Group
MIT Laboratory for Computer Science

May 18, 1993

Multithreading

= Goal: tolerate long latencies
= Approach: compute while waiting

= Mechanism: rapid context switching

Executable Threads
CO
Context L oadedQ
Pointer "
i | @@ @
o ReadyQ

: slote

W}Cn

Register File Memory

Flexible Contexts

* Thread requirements vary

e register usage is thread-dependent

e decreasing marginal benefits from more registers

= Software-based approach
e application-specific partitioning
e variable-size contexts

e static or dynamic division

= More resident contexts

e better utilization of scarce registers

e improve processor efficiency

Outline

" Register relocation

e hardware primitive

e software support

Experiments

e remote memory references

e synchronization events

Related work

Conclusions

Future work

Register Relocation

Flexible base/offset scheme

Base: register relocation mask (RRM)

Offset: context-relative register numbers

Examples:

0[1{0|1| |0|0[0
or 19/0] (1|01
0|1/0(1] (1|0|1

BASE
4 bits

OFFSET
3 bits

RRM

context-
relative
register

absolute,
relocated
register

0/10

1/1|1{0

BASE
3 bits

OFFSET
4 bits

RRM

context-
relative
register

absolute,
relocated
register

Hardware Support

= Register relocation mask (RRM)
e special hardware register

e [lgn] bits for n general registers

= New instruction: Idrrm R
e set RRM from low-order bits of R

e delay slots may follow

= |nstruction decode modifications
e bitwise OR instruction operands and RRM

e RISC fixed-field decoding

Reg Reg Reg :
Opcode gl g2 dest Function
RRM
OR OR W
Relocated| | Re obated Relocated
Reg Reg Reg
srcl src2 dest

Software Support

= Context switch
= Context (de)allocate

= Context (un)load

CO
RRM Cl
[i]
Switch } C2
®
o
o
I } Cn

Register File

Executable Threads
L oadedQ

@I xxx |

ReadyQ

(OO eee ()

Allocation Bitmap

Memory

Context Scheduling

* Managed in software
e no hardware task queues

» flexible control over policy

= Sample policy

e resident context queue

e round-robin scheduling

e fast context switch =~ 4 to 6 cycles

Linksin Registers

CNextRRM —p

NextRRM

PC

Resident
Contexts

PC
RRM

o000 —)

NextRRM j

PC

Restore

Active Context

Context Management

* Implemented in software

o flexible partitioning of register file
e static or dynamic

e identical or varying sizes

= Context allocation

e general-purpose dynamic routines
e search allocation bitmap
e simple shift and mask operations

e alloc = 25 cycles, dealloc = 5 cycles

= Context loading

e save/restore exact number of registers

e single routine with multiple entry points

Compiler Support

= Compiler informs runtime system

e number of registers used by thread

e computed by traversing thread call graph

= Compiler protects thread contexts

e threads associated with single application
e single address space

e register and memory overwrites similar

* Potential optimizations

e choose number of registers per context
e decreasing marginal benefits
e power-of-two context size constraint

e example: allocate 16 vs. 17 registers

Experiments

= OQverview

e cache faults

e synchronization faults

= Conventional multithreading

e fixed-size contexts: 32 regs

e zero alloc/dealloc costs

" Register relocation

e variable-size contexts: 4, 8, 16, 32 regs

e conservative alloc/dealloc costs

= Simulation Environment

e single multiprocessor node
e coarsely multithreaded architecture
e synthetic threads with stochastic run lengths

¢ Proteus simulator

Tolerating Cache Faults

= Parameters
e run lengths (R) geometrically distributed

e remote memory Iatency constant

e contexts never unloaded

= Example results
e register file size = 128

e threads require 6 to 24 registers

1.0+

0.8

o
o
|

Efficiency

o
~
I

0.2

00 T
0 64 128 192 256 320 384 448 512
Memory Latency (cycles)

Tolerating Synchronization Faults

= Parameters
e run lengths (R) geometrically distributed

e synchronization latency exponentially distributed
e competitive two-phase unloading policy

= Example results
e register file size = 128

e threads require 6 to 24 registers

1.04

0.8,

o
(@]
|

Efficiency

o
~
I

0.2

0.04+————r————F——1——— 71— s
0 512 1024 1536 2048 2560 3072 3584 4096
Synchronization L atency (cycles)

Experiment Discussion

* Many additional experiments
e similar results

e pboth cache and synchronization faults

e homogeneous context sizes

= Significant performance improvements
e improved processor efficiency

e better over wide range of parameters

e 2x improvement for many workloads

" Processor efficiency [Saavedra-Barrera 90]

saturated _
simple

Efficiency

linear
gains

Contexts

Related Work

Generally inflexible, hardware-intensive

Finely multithreaded processors
e cycle-by-cycle interleaving

e HEP, MASA, Horizon, Tera, Monsoon

Coarsely multithreaded processors

e execute longer instruction blocks
e switch on high-latency operations

e APRIL, hybrid dataflow/von-Neumann

Named State Processor

e fully associative register file

e more flexible, but hardware-intensive

Base + offset register addressing

e addition flexible but expensive

e Am29000, HEP

Conclusions

" Register relocation

e multiple variable-size contexts

e minimal hardware support

= Significant flexibility
e software-based approach

o flexible partitioning of register file

e flexible control over scheduling

* Substantial performance improvements

e better utilization of registers
e enables more resident contexts
e tolerate longer latencies, shorter run lengths

e improved processor efficiency

Extensions and Future Work

Software-only approach

e generate multiple versions of code

e use disjoint register subsets

Multiple active contexts

e select from multiple RRMs
e context-specific operands

e example: ADD CO0.R3, CO.R4, C1.R6

Cache interference effects

¢ threads share common cache
e most interference destructive
e fine-grain parallelism shrinks working sets

e utilization vs. interference tradeoff

Arbitrary context sizes

¢ addition vs. OR for relocation

o efficient software support

