
Register Relocation
Flexible Contexts for Multithreading

Carl A. Waldspurger

William E. Weihl

Parallel Software Group
MIT Laboratory for Computer Science

May 18, 1993

Multithreading

Goal: tolerate long latencies

Approach: compute while waiting

Mechanism: rapid context switching

MemoryRegister File

Context
Pointer

Switch

LoadedQ

ReadyQ

Executable Threads}

Cn

C1

C0

}

}

Flexible Contexts

Thread requirements vary� register usage is thread-dependent� decreasing marginal benefits from more registers

Software-based approach� application-specific partitioning� variable-size contexts� static or dynamic division

More resident contexts� better utilization of scarce registers� improve processor efficiency

Outline

Register relocation� hardware primitive� software support

Experiments� remote memory references� synchronization events

Related work

Conclusions

Future work

Register Relocation

Flexible base/offset scheme

Base: register relocation mask (RRM)

Offset: context-relative register numbers

Examples:

10 1 0 000

00 0 11
context-
relative
register

RRM

0 1 0 1 1 0 1

BASE OFFSET
4 bits 3 bits

absolute,
relocated
register

OR

00000 1 0

11 1 00

RRM

context-
relative
register

1 1 010 1 0

OFFSETBASE
4 bits3 bits

absolute,
relocated
register

OR

Hardware Support

Register relocation mask (RRM)� special hardware register� dlg ne bits for n general registers

New instruction: ldrrm R� set RRM from low-order bits of R� delay slots may follow

Instruction decode modifications� bitwise OR instruction operands and RRM� RISC fixed-field decoding

Opcode Function

OR OR OR
RRM

Reg
src1

Reg
src2

Reg
dest

Relocated Relocated Relocated

Reg
src1

Reg
src2

Reg
dest

Software Support

Context switch

Context (de)allocate

Context (un)load

Allocation Bitmap

MemoryRegister File

RRM

Switch

LoadedQ

ReadyQ

Executable Threads

Cn

C0

} C1

}

}

} C2

Context Scheduling

Managed in software� no hardware task queues� flexible control over policy

Sample policy� resident context queue� round-robin scheduling� fast context switch � 4 to 6 cycles

PC

NextRRM

PC

NextRRM

PC

NextRRM

PC
RRM

Save Restore

Resident
Contexts

Active Context

Links in Registers

Context Management

Implemented in software� flexible partitioning of register file� static or dynamic� identical or varying sizes

Context allocation� general-purpose dynamic routines� search allocation bitmap� simple shift and mask operations� alloc � 25 cycles, dealloc � 5 cycles

Context loading� save/restore exact number of registers� single routine with multiple entry points

Compiler Support

Compiler informs runtime system� number of registers used by thread� computed by traversing thread call graph

Compiler protects thread contexts� threads associated with single application� single address space� register and memory overwrites similar

Potential optimizations� choose number of registers per context� decreasing marginal benefits� power-of-two context size constraint� example: allocate 16 vs. 17 registers

Experiments

Overview� cache faults� synchronization faults

Conventional multithreading� fixed-size contexts: 32 regs� zero alloc/dealloc costs

Register relocation� variable-size contexts: 4, 8, 16, 32 regs� conservative alloc/dealloc costs

Simulation Environment� single multiprocessor node� coarsely multithreaded architecture� synthetic threads with stochastic run lengths� Proteus simulator

Tolerating Cache Faults

Parameters� run lengths (R) geometrically distributed� remote memory latency constant� contexts never unloaded

Example results� register file size = 128� threads require 6 to 24 registers

0 64 128 192 256 320 384 448 512
Memory Latency (cycles)

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

nc
y

R = 128

R = 32

R = 8

Tolerating Synchronization Faults

Parameters� run lengths (R) geometrically distributed� synchronization latency exponentially distributed� competitive two-phase unloading policy

Example results� register file size = 128� threads require 6 to 24 registers

0 512 1024 1536 2048 2560 3072 3584 4096
Synchronization Latency (cycles)

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

nc
y

R = 512

R = 128

R = 32

Experiment Discussion

Many additional experiments� similar results� both cache and synchronization faults� homogeneous context sizes

Significant performance improvements� improved processor efficiency� better over wide range of parameters� 2� improvement for many workloads

Processor efficiency [Saavedra-Barrera 90]

linear
gains

saturated

E
ff

ic
ie

nc
y

Contexts

realistic
simple

Related Work

Generally inflexible, hardware-intensive

Finely multithreaded processors� cycle-by-cycle interleaving� HEP, MASA, Horizon, Tera, Monsoon

Coarsely multithreaded processors� execute longer instruction blocks� switch on high-latency operations� APRIL, hybrid dataflow/von-Neumann

Named State Processor� fully associative register file� more flexible, but hardware-intensive

Base + offset register addressing� addition flexible but expensive� Am29000, HEP

Conclusions

Register relocation� multiple variable-size contexts� minimal hardware support

Significant flexibility� software-based approach� flexible partitioning of register file� flexible control over scheduling

Substantial performance improvements� better utilization of registers� enables more resident contexts� tolerate longer latencies, shorter run lengths� improved processor efficiency

Extensions and Future Work

Software-only approach� generate multiple versions of code� use disjoint register subsets

Multiple active contexts� select from multiple RRMs� context-specific operands� example: ADD C0.R3, C0.R4, C1.R6

Cache interference effects� threads share common cache� most interference destructive� fine-grain parallelism shrinks working sets� utilization vs. interference tradeoff

Arbitrary context sizes� addition vs. OR for relocation� efficient software support

