
Preventing Recursion Deadlock

in Concurrent Object-Oriented Systems

Eric A. Brewer

�

Carl A. Waldspurger

Parallel Software Group, MIT Laboratory for Computer Science

Abstract

This paper presents solutions to the problem

of deadlock due to recursion in concurrent object-

oriented programming languages. Two language-

independent, system-level mechanisms are proposed:

a novel technique using multi-ported objects, and a

named-threads scheme that borrows from previous

work in distributed computing. We compare the solu-

tions, and present an analysis of their relative merits.

An expanded version of this paper appears as [4].

1 Introduction

Recursion is a powerful programming technique

that allows straightforward expression of many algo-

rithms. Unfortunately, recursion often leads to dead-

lock in concurrent object-oriented systems. In many

systems [2, 14, 11, 5], a method that modi�es an ob-

ject's state cannot even call itself recursively. Recur-

sion deadlock occurs whenever an object is blocked

pending a result whose computation requires the in-

vocation of additional methods on that same object.

We present two transparent solutions that allow

general recursion without deadlock. These solutions

are transparent in that programs su�ering from re-

cursion deadlock will run correctly without change

if either solution is incorporated into the underlying

system. The �rst solution is based on multi-ported

objects, and uses separate communication ports to

identify recursive calls. The second solution, named

threads, draws on previous work in distributed com-

puting, and generates a unique name for each thread

in order to detect recursive calls.

A combination of three factors leads to recursion

deadlock. First, an object must hold a lock on some

state. In systems with at most one active thread per

object [2, 14, 11, 5], there is a single implicit lock for

the entire object state. Second, the object must make

a blocking call to some object (possibly itself), holding

the lock while it waits for the response to the call.

Finally, the resulting call graph must contain a call

back to the locked object that requires access to the

locked state, forming a cycle. When these criteria are

met, every object in the cycle is waiting for a reply;

the objects are deadlocked.

�

Supported by an O�ce of Naval Research Fellowship.

Authors' address: Room 521C, 545 Technology Square,

Cambridge, MA 02139. E-mail: fbrewer,carlg@lcs.mit.edu.

Aside from simple recursive methods, many pat-

terns of message-passing can lead to recursion dead-

lock. Programs that manipulate cyclic data struc-

tures, use call-backs while responding to exceptional

conditions, or implement dynamic sharing mecha-

nisms are all candidates for recursion deadlock. Some

programming styles, such as inheritance by delegation,

are also prone to recursion deadlock [9].

2 Related Work

A variety of partial solutions exist for handling

some cases of recursion deadlock. The simplest par-

tial solutions handle only direct recursion involving a

single object. These amount to releasing the object

lock and ensuring that the next method invoked is the

recursive call (e.g., by prepending it to incoming mes-

sage queue), which will reacquire the lock [7].

Another solution for direct recursion is to provide

procedures in addition to methods [14]. Unlike meth-

ods, procedures are stateless and thus do not require

locks. In this approach, a method calls a procedure

that handles the recursion. This avoids deadlock be-

cause there is no lock acquisition for the recursive call.

Since procedures only have access to the current ob-

ject's state, multiple-object recursion is not possible.

A partial solution for �xed-depth recursion is the

use of selective message-acceptance constructs [14, 2].

For example, ABCL/1 allows calls to be accepted in

the body of a method if the object enters a selective

\waiting mode". In this case, the recursive call need

not acquire the object lock. An explicit waiting mode

must be introduced for each level of recursion; if there

are too many recursive calls the system will deadlock.

If recursive calling patterns are known in advance,

deadlock can be avoided in actor systems by using re-

placement actors. By cleverly specifying insensitive

actors that bu�er most incoming messages while re-

sponding to a few special messages (such as become),

programmers can write code that explicitly avoids po-

tential deadlocks [1]. Although actor replacement al-

lows deadlock-free code, the complexity of explicitly

introducing insensitive actors and behaviors for all

possible recursive calling patterns is daunting. In fact,

these low-level actor mechanisms (as with enabled-sets

[13] and protocols [3]) could be used to implement the

solutions we propose without system-level changes.

Techniques for deadlock detection [12] also could be

applied. Deadlock-detection algorithms examine pro-

cess and resource interactions to �nd cycles (assumed

to be relatively infrequent), and usually operate au-

tonomously. Although such schemes could be used to

detect and recover from deadlock, they would not be

practical for �ne-grained recursive programs.

3 Computational Model

The model we assume encompasses most contempo-

rary concurrent object-oriented systems. Objects en-

capsulate state with a set of methods that can ma-

nipulate that state directly. Objects interact only by

sending messages to invoke methods at other objects.

We divide messages into two categories, sends

and calls. A send is an asynchronous, non-blocking

method invocation; it is unidirectional, and has no

corresponding reply.

A call is a synchronous, blocking method invoca-

tion. After performing a call, the sender waits for a

reply. This is analogous to normal procedure call se-

mantics. Any locks held by the sender prior to the

call are held until the reply is received. Every call has

a matching reply. A set of concurrent calls may also

be sent such that each of the calls operates in parallel,

and the sender waits for replies from all of the calls

before continuing execution.

A lock ensures mutual exclusion for some piece

of state. A given object may contain several locks.

We assume that locks are the underlying primitive

synchronization mechanism for mutual exclusion. To

avoid complication, we will assume that there is a sin-

gle implicit lock per object that provides mutual ex-

clusion for the entire object state, as in most contem-

porary languages [2, 14, 11, 5]. However, the solutions

we present can be easily adapted for languages with

more sophisticated locking schemes [4].

A thread is a single ow of control that performs

a sequential computation. A single thread may exe-

cute code at several objects. For example, if object A

calls object B, the sequential ow of control would ex-

ecute some code at A, proceed to execute the invoked

method at B, and �nally continue execution back at

A. In a sense, the thread travels with the messages

between A and B. This view of threads may di�er

from that of the underlying implementation. A thread

can also fork several distinct subthreads by perform-

ing concurrent calls. In this case, the original thread

is suspended until its subthreads, or children, all reply

and join with the original parent thread.

1

1

Joins are relevant only for (blocking) calls.

4 Recursive Call Semantics

In sequential object-oriented systems such as

Smalltalk-80 and C++, there is only a single thread

of control, so mutual exclusion locks are unnecessary.

In these systems, if the call chain generated during a

method invocation results in a later invocation on the

same object, the recursive call is permitted to modify

the object's state. Thus, a recursive call may change

the state of an object in sequential object-oriented sys-

tems, and there is no deadlock issue.

In concurrent systems, a complete lack of mutual

exclusion is not satisfactory. Unfortunately, the addi-

tion of locks makes recursion deadlock possible. Ide-

ally, we would like to preserve atomicity while elim-

inating the potential for recursion deadlock. Our

proposed semantics for concurrent systems is consis-

tent with the \expected" behavior in sequential sys-

tems. We allow recursive calls to execute without

(re)acquiring locks. This change permits descendant

threads in the call graph to modify an object's state

if a parent thread holds the object's lock.

However, the resulting behavior is unde�ned if a

thread forks subthreads. When a thread forks several

children, which thread gets the lock? If all subthreads

have access to the object state, they may interfere with

one another, exactly the behavior locks are supposed

to prevent. The desired behavior is that any of the de-

scendant threads may access the state, but only one

at a time. Thus, our proposed semantics is to sat-

isfy two properties: �rst, descendants must be able

to acquire locks held by their ancestors, and second,

mutual exclusion must be provided among siblings.

5 Multi-Ported Object Solution

In this section we present a novel solution to the

recursion deadlock problem using multiple communi-

cation channels, or ports, per object. Conventional

object-oriented systems assume objects have a single

port through which all incoming messages arrive. The

traditional notion of an object can be relaxed to al-

low several ports. The use of multiple ports to en-

able di�erent client capabilities, multiple viewpoints,

and secure communications is explored in [8]. We

demonstrate that the recursion deadlock problem can

be solved by providing objects with the ability to cre-

ate and select ports dynamically.

The recursion problem is solved by creating a new

current port for each method invocation. This port re-

ceives all replies and recursive calls, and persists until

the method terminates. An object accepts incoming

messages from its current port, and bu�ers messages

addressed to other ports. The current port for an idle

object X is the distinguished top-level port P

X

0

.

5.1 Handling Messages

Messages that arrive at an object X while it is exe-

cuting some method H are bu�ered for later process-

ing. If H is blocked pending the arrival of messages

required for further computation, or if H completes,

X enters message-reception mode. Messages are ac-

cepted if and only if they are addressed to the current

port.

Normal object semantics guarantee that for each

object, only one method activation exists at a time;

objects process messages serially (between state tran-

sitions). To permit recursive calls, we weaken this con-

straint to require that each object maintain a method

activation stack of pending method activation frames,

and guarantee that only the activation at the top of

this stack may be actively executing. This corresponds

to the stack of procedure call frames found in conven-

tional sequential languages.

The top frame on the method activation stack con-

tains the state of the currently executing computation.

Frames other than the top frame contain the state of

suspended method invocations that are blocked pend-

ing the arrival of reply messages. New frames are

pushed on the method activation stack when handling

messages other than replies.

2

Implementation: The procedure for handling a

message M accepted by object X is as follows:

IfM is a reply, match the reply to its corresponding

call. If there are no remaining outstanding concurrent

calls, resume the associated blocked thread.

Otherwise, a new frame is allocated on top of the

method activation stack. Then a new, locally unique

port number P is generated

3

and associated with the

frame. This port becomes the new current port; the

set of acceptable messages are those addressed to P .

Finally, the appropriate method is invoked.

When a method completes, its frame is popped o�

the method activation stack. The current port is then

set to the port associated with the suspended method

currently on top of the activation stack.

5.2 Sending Messages

In the following discussion, assume that an object

X, during the invocation of its method H in response

to message M , is sending message M

Y

to object Y .

The current port for X during its handling of H is

denoted by P

X

h

.

M

Y

is augmented with a port binding map, B

M

Y

,

that associates object names with communication

2

If the current port is the distinguished top-level port, these

messages can be top-level calls or sends. Otherwise, these mes-

sages are recursive calls.

3

Perhaps by simply incrementing a counter.

ports. In general, the size of a port binding map B

M

is proportional to the number of distinct objects in-

volved in the processing of message M .

Implementation: The procedure for sending mes-

sage M

Y

to object Y is as follows:

IfM

Y

is a send, set B

M

Y

to nil, and then sendM

Y

to Y at port P

Y

0

.

If M

Y

is a call, then compute the destination port

p and the port binding map B

M

Y

to be sent withM

Y

.

Compute p by searching for the port associated with

Y in the port binding map B

M

from message M .

If Y 62 B

M

, set p to P

Y

0

. Set B

M

Y

to be the same as

B

M

extended

4

(or changed) to map X ! P

X

h

. Finally,

send M

Y

to Y at port p.

If M

Y

is one of several concurrent calls, perform

the remaining calls. Otherwise, suspend the current

thread pending replies.

6 Named-Threads Solution

The essential elements of named threads are based

on action-ids from Argus [10], a language for robust

distributed computing. The named-threads approach

to avoiding recursion deadlock assigns each thread a

unique identi�er that travels with it through every ob-

ject and message. Every object has a current owner {

its currently executing thread, and every message has

a name { that of the thread that carries it. In a recur-

sive call, the name of the message matches the name

of the owner. This avoids the deadlock that results

from attempting to reacquire access to the state.

The simplest cases occur in systems without con-

current calls. Upon acquiring access to the object's

state, the thread marks itself as the owner of the ob-

ject using its name or thread id. Upon recursion, the

thread id of the message is checked against the thread

id of the owner. If the ids match, the incoming mes-

sage has access to the state. Because the new task can

determine that it already has access, it does not wait

for the current task to �nish, thus avoiding deadlock.

6.1 Concurrent Calls

Most concurrent object-oriented languages allow a

single thread to create multiple threads. This wreaks

havoc with the simple thread-id solution presented

above. As discussed in Section 3, two requirements

must be met for the desired semantics: descendants

must be able to acquire locks held by their ancestors,

and mutual exclusion must be provided among sib-

lings. These requirements lead to the following con-

vention for naming threads.

4

This extension (or change) need be done at most once per

method invocation, not once per call.

Upon creation, a thread is given a unique identi�er.

When a thread forks subthreads, we extend its thread

id for every member of the set of blocking calls; this

set is its call group. The extension is di�erent for every

resulting thread: if thread t performs two concurrent

calls, the two new threads are: t.1 and t.2. If t.1 then

spawns a two-member call group, there are �ve threads

in total: t, t.1, t.1.1, t.1.2, and t.2. Each thread has a

unique thread id, and each thread id encodes all of the

thread's ancestors. A thread is an ancestor of another

exactly when its id is a pre�x of the other's id.

6.2 Implementation

The use of named threads requires some exten-

sions to the basic object model. First, an object must

have an owner �eld, which contains the id of the cur-

rent thread. Second, there must be a stack of pend-

ing call messages, as explained below, referred to as

ownerStack. Finally, each message must be marked

with its thread id.

Message Acceptance: A message is accepted if

and only if it is a descendant of owner; that is, owner

must be a pre�x of the message's thread id. The owner

�eld initially contains nil, which allows all messages

to be accepted. Otherwise, an accepted message is

either a reply or a recursive call. If the message is

a reply, then it is a response to a call spawned by

the current owner, and the blocked thread is resumed.

(If it did not match the current owner, it would not

have been accepted.) If it is a recursive call, the

current owner is pushed onto the stack ownerStack.

The thread carried with the message becomes the new

owner and executes.

Choosing the Next Thread: Once a thread is

started, no new messages are accepted until the thread

ends or performs a call. When the thread ends, the

previous owner is popped o� ownerStack. This may

make previously unacceptable messages acceptable.

Sending Messages: If a thread performs a call,

the object starts accepting messages. Because the

thread owns the lock, only descendant messages or the

reply will be accepted. A send does not pass on the

thread-id, leaving the id �eld of the message empty.

Thus all methods executed in response to a send start

new threads.

Concurrent Calls: When concurrent calls are

made, the thread id of each member of the call group

is extended by a unique number. This guarantees that

at most one member of the call group can have access

to the object at any given time. The spawning thread

retains ownership of the lock until one of the concur-

rent calls recurses, or until all the replies are received

and the method completes.

(a)

W

X

Y

W

X

Y
LOCK

W

X

Y

(c)(b)

Figure 1: Calling patterns in the abstract query example;

call and reply messages are represented by solid and hollow

arrowheads respectively.

7 An Illustrative Example

Consider a do-querymethod de�ned for a node ob-

ject that is connected to other nodes in a graph. When

invoked on a node N , this method queries each of N 's

children concurrently and then returns a function of

their replies. The children compute their replies in

the same way. As is common in sequential implemen-

tations, a node object marks itself visited the �rst time

it is queried, and the do-query method returns imme-

diately if an object has already been visited. To illus-

trate our solutions, we examine this abstract concur-

rent query algorithm on part of a larger graph. Note

that the call tree is isomorphic to the graph; calls are

made along the directed edges.

Figure 1(a) presents a graph that involves recur-

sion; the corresponding query in �gure 1(b) su�ers

from recursion deadlock. Since X is blocked waiting

for the query to W to complete, the query from W to

X never executes. The method at W will not com-

plete until X replies, and X will not reply until the

method at W completes. The following two subsec-

tions illustrate how the solutions eliminate recursion

deadlock in this example.

7.1 A Multi-Ported Object Solution

The following steps, shown in Figure 1(c), trace

the message-passing activity for this example. Assume

objects W and Y are initially idle, with current ports

P

W

0

and P

Y

0

, respectively. Assume X calls W while

its current frame is X

5

, with associated port P

X

5

.

1. X calls do-query at W on port P

W

0

, using the

port binding map

5

B = f(X ! P

X

5

)g.

2. W receives X's call: W starts a new frame W

1

with associated port P

W

1

. W concurrently calls

X and Y , using B = f(X ! P

X

5

); (W ! P

W

1

)g.

The call to X is sent to port P

X

5

, and the call to

Y is sent to port P

Y

0

.

3. Concurrently:

(a) Y receives W 's call: Y starts a new frame

Y

1

with associated port P

Y

1

. Y replies to W

and ends frame Y

1

.

5

The port binding map B would contain additional entries if

the current call is part of a larger call chain.

(b) X receives W 's call: This is a recursive

call involving the path of objects X !W!

X . X accepts the message since it is ad-

dressed to X's current port P

X

5

. X starts

a new frame X

6

with associated port P

X

6

.

X replies to W , and then ends frame X

6

,

restoring X

5

as the current frame.

4. W receives the replies from X and Y .

5. W computes the return value as a function of the

information returned from X and Y , and sends

a reply containing this value to X . W then ends

frame W

1

, restoring W

0

as the current frame.

7.2 A Named-Threads Solution

This example can be used to illustrate the named-

threads technique as well. Objects will be annotated

with their current owner: \X[t:1]" implies that object

X is owned by thread t:1.

1. X[x] calls W [], invoking method do-query.

This leads to W [x].

2. W [x] concurrently calls X[x] and Y []. The mes-

sage to X[x] has an id of x:1, and the message to

Y [] has an id of x:2.

3. Concurrently:

(a) Y [] receives the call from W [x]. Note that

W is owned by x but the calling thread is

x:2, which implies Y [x:2]. The result is cal-

culated and returned to W [x]. After the re-

ply, Y is again unowned, that is, Y [].

(b) X[x] receives the call with id x:1 from W [x].

This is a recursive call. Since x, the cur-

rent owner of X, is an ancestor of the calling

thread, x:1, the call is accepted. The current

owner, x, is pushed on to ownerStack, and

x:1 becomes the new owner. X[x:1] replies

to W [x], and the previous owner is popped

o� the stack, which leaves X[x].

4. W [x] receives the replies from X and Y .

5. W computes the return value of do-query based

on the replies. The result is returned to X[x],

and W is again unowned. The ownership is then:

X[x], Y [], and W [].

8 Analysis and Comparison

The multi-ported object and named-threads solu-

tions a�ect the underlying system in three major ar-

eas: maintenance of a call stack, overhead for message

sending and message acceptance, and an increase in

message length.

A send message incurs negligible overhead because

there is no call stack, little extra work for handling

messages, and no increase in message length.

For the case of blocking calls, each object maintains

a stack of pending calls. In the multi-port solution this

is the stack of frames, while in the named-threads so-

lution, it is the stack of owners. In general, the size

of the pending call stack is unbounded. The height of

the stack equals the number of outstanding recursive

calls to that object. For single-object recursion, this

is the depth of the call chain, while for multiple-object

recursion the height will be smaller. The stack is not

a side e�ect of these solutions; it is fundamental to re-

cursion, and corresponds to the procedure stacks used

in traditional languages.

To compare the solutions, it is useful to de�ne two

metrics for call chains: object depth and split depth.

The object depth is the number of distinct objects in

a call chain. The split depth measures the number

of splits in a call chain; an unsplit thread has a split

depth of one. Thus if X concurrently calls Y and Z,

the split depth at Y is two, one for the original thread

and one for the split at X. Using the named-threads

notation, the split depth is the number of �elds in the

id. For example, \x:1:2" has a split depth of three.

The solutions di�er in the cost of identifying the

destination and accepting a message. For multi-ported

objects, choosing a destination for a call requires scan-

ning the port binding map to identify the exact des-

tination. The average time for this scan is propor-

tional to the length of the port binding map, which is

the same as the object depth of the call chain. Thus

the time for locating the destination is proportional

to the object depth. For the named-threads solution,

the destination is known and the cost is constant.

The cost of message acceptance has a dual behav-

ior. The multi-port solution checks the validity of the

port with a single comparison. The named-threads

solution must compare the id of the message and the

id of the owner. In the worst case, this comparison is

proportional to the length of the owner id. Since the

length of the owner grows with each split, the cost of

the acceptance test is proportional to the split depth.

Note that if the object is unowned, the message is a

send, or the id starts with a di�erent object, then the

test completes immediately.

Message length is also a�ected di�erently by the

two solutions. For multi-ported objects, the message

is extended by the port binding map, which has length

proportional to the object depth. For named threads,

the message is extended by the calling thread id, which

has length proportional to the split depth.

Since the performance of the multi-port solution de-

pends on object depth and that of the named-threads

solution depends on split depth, their relative merit

X

X

Y

X 1

X 2

X 3

X k

(a) (b) (c)

Direct Recursion
object depth = 1

split depth = 1

Long Call Chain
object depth = k

split depth = 1

Concurrent Calls
object depth = 2

split depth = s

(a) (b) (c)

Message Multi-Ported O(1) O(k) O(2)

Length Named Threads O(1) O(1) O(s)

Sending Multi-Ported O(1) O(k) O(2)

Overhead Named Threads O(1) O(1) O(1)

Receiving Multi-Ported O(1) O(1) O(1)

Overhead Named Threads O(1) O(1) O(s)

Figure 2: Example calling patterns. Arrows denote calls,

and arcs joining arrows signify concurrent calls. The table

lists the corresponding overheads for each calling pattern.

depends on the call chains encountered in a given sys-

tem. Figure 2 depicts three possible call chains.

In many applications, call chains involve few ob-

jects and few concurrent calls, as in Figure 2(a), and

both solutions perform well. Systems with recursion

among many objects and few concurrent calls, as in

Figure 2(b), would perform better using the named-

threads technique. Systems with recursion among

small groups of objects and many concurrent calls, as

in Figure 2(c), would perform better using the multi-

ported object technique.

9 Conclusions

Current object systems place severe limits on the

use of recursion, reducing expressive power. The two

techniques presented allow fully general recursion in a

manner that is transparent to the user. The multi-port

solution uses ports to distinguish recursive calls, which

places the burden on the sender to identify the correct

port. The named-threads solution names each path

in the call tree, encoding ancestors in the name. The

test for ancestry is used to detect recursive calls, which

places the burden on the receiver to identify ancestors.

The relative overhead of these solutions depends on

application call graphs: those with many objects and

relatively few concurrent calls perform better with the

named-threads solution, while the multi-port solution

performs better in the opposite case.

Recursion is a powerful and important program-

ming technique that causes deadlock in most con-

current object-oriented systems. The solutions pre-

sented in this paper provide simple, e�ective system-

level support for general recursion. They can be used

by designers and implementors of concurrent object-

oriented systems to avoid severe restrictions on the

expression of recursion.

Acknowledgements: We thank Barbara Liskov,

William Weihl, Adrian Colbrook, Chris Dellarocas,

Sanjay Ghemawat, Bob Gruber, Wilson Hsieh, Ken

Kahn, Lisa Sardegna, and Paul Wang.

References

[1] G. Agha. Actors: A Model of Concurrent Computa-

tion in Distributed Systems. MIT Press, 1986.

[2] P. America. \POOL-T | A Parallel Object-Oriented

Language." In Yonezawa and Tokoro, eds., Object-

Oriented Concurrent Programming, MIT Press, 1987.

[3] J. van den Bos and C. La�ra. \PROCOL: A Paral-

lel Object Language with Protocols." Proceedings of

OOPSLA '89, Oct. 1989.

[4] E.A. Brewer and C.A. Waldspurger. \Preventing Re-

cursion Deadlock in Concurrent Object-Oriented Sys-

tems." MIT TR #MIT/LCS/TR-526, Jan. 1992.

[5] A.A. Chien. Concurrent Aggregates (CA): An Object-

Oriented Language for Fine-Grained Message-Passing

Machines., PhD thesis, MIT, July 1990.

[6] W.J. Dally. A VLSI Architecture for Concurrent Data

Structures. Kluwer Academic Publishers, 1987.

[7] K. Kahn et al. \Vulcan: Logical Concurrent Objects."

In Shapiro, ed., Concurrent Prolog: Collected Papers,

MIT Press, 1987.

[8] K. Kahn. \Objects: A Fresh Look," Proceedings of

ECOOP '89. Cambridge University Press, July 1989.

[9] H. Lieberman. \Using prototypical objects to imple-

ment shared behavior in object-oriented systems,"

Proceedings of OOPSLA '86, Sep. 1986.

[10] B. Liskov. \Implementation of Argus," Proceedings

of the 11th ACM Symposium on Operating Systems

Principles, Nov. 1987.

[11] C.R. Manning. Acore: The Design of a Core Ac-

tor Language and its Compiler. Master's thesis, MIT,

Aug. 1987.

[12] M. Singhal. \Deadlock Detection in Distributed Sys-

tems," IEEE Computer, Nov. 1989.

[13] C. Tomlinson and V. Singh. \Inheritance and Syn-

chronization with Enabled-Sets," Proceedings of

OOPSLA '89, Oct. 1989.

[14] A. Yonezawa et al. \Modelling and Programming in

an Object-Oriented Concurrent Language ABCL/1."

In Yonezawa and Tokoro, eds., Object-Oriented Con-

current Programming, MIT Press, 1987.

