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Abstract

Thisthesis presentsflexible abstractionsfor specifying resource management policies, together
with efficient mechanismsfor implementing those abstractions. Several novel scheduling tech-
niques are introduced, including both randomized and deterministic algorithms that provide
proportional-share control over resource consumption rates. Such control is beyond the capa-
bilities of conventional schedulers, and is desirable across a broad spectrum of systems that
service clients of varying importance. Proportional-share scheduling is examined for several
diverse resources, including processor time, memory, access to locks, and disk bandwidth.

Resource rights are encapsulated by abstract, first-class objects called tickets. An active
client consumes resources at a rate proportional to the number of ticketsthat it holds. Tickets
can beissued in different amounts and may be transferred between clients. A modular currency
abstraction is also introduced to flexibly name, share, and protect sets of tickets. Currencies
can be used to isolate or group sets of clients, enabling the modular composition of arbitrary
resource management policies.

Two different underlying mechanisms are introduced to support these abstractions. Lottery
scheduling is a novel randomized resource allocation mechanism. An alocation is performed
by holding a lottery, and the resource is granted to the client with the winning ticket. Stride
scheduling is a deterministic resource allocation mechanism that computes a representation
of the time interval, or stride, that each client must wait between successive allocations.
Stride scheduling cross-applies and generalizes elements of rate-based flow control agorithms
designed for networksto dynamically schedul e other resources such as processor time. A novel
hierarchical stride algorithm is also introduced that achieves better throughput accuracy than
prior schemes, and can reduce response-time variability for some workloads.

The proposed techniques are compared and evaluated using a variety of quantitative ex-
periments. Simulation results and prototype implementations for operating system kernels
demonstrate flexible control over awide range of resources and applications.
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Chapter 1

| ntroduction

Scheduling computationsin concurrent systems is a complex, challenging problem. Resources
must be multiplexed to servicerequestsof varying importance, and the policy chosen to manage
this multiplexing can have an enormous impact on throughput and response time. Effective
resource management requiresknowledge of both user preferencesand application-specific per-
formance characteristics. Unfortunately, users, applications, and other clients of resources are
typically given very limited control over resource management policies. Traditional operating
systems centrally manage machineresourceswithinthekernel [EKO95]. Clientsarecommonly
afforded only crude control through poorly understood, ad-hoc scheduling parameters. Worse
yet, such parameters do not offer the encapsulation or modularity properties required for the
engineering of large software systems.

Thisthesisadvocatesaradically different approach to computational resource management.
Resource rights are treated as first-class objects representing well-defined resource shares.
Clientsare permitted to directly redistributetheir resourcerightsin order to control computation
rates. In addition, asimple, powerful abstraction is provided to facilitate modular composition
of resource management policies. As aresult, custom policies can be expressed conveniently
at various levels of abstraction. The role of the operating system in resource management is
reduced to one of enforcement, ensuring that no client is able to consume more than its entitled
share of resources.

This chapter presents a high-level synopsis of the thesis. The next section containsabasic
overview of the key thesiscomponents. Thisisfollowed by highlights of the main contributions
of thethesis, and a brief summary of related research. The chapter closes with a description of
the overall organization for therest of the thesis.
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1.1 Overview

Accurate control over serviceratesisdesirable across a broad spectrum of systemsthat process
requests of varying importance. For long-running computations such as scientific applications
and simulations, the consumption of computing resourcesthat are shared among different users
and applicationsmust be regulated. For interactive computations such as databases and media-
based applications, programmers and users need the ability to rapidly focus availableresources
on tasks that are currently important.

This thesis proposes a general framework for specifying dynamic resource management
policies, together with efficient mechanismsfor implementing that framework. Resourcerights
are encapsulated by abstract, first-class objects called tickets. An active client is entitled to
consume resources at a rate proportional to the number of tickets that it holds. Tickets can
be issued in different amounts and may be transferred between clients. A modular currency
abstraction is also introduced to flexibly name, share, and protect sets of tickets. Currencies
can be used to isolate or group sets of clients, enabling the modular composition of arbitrary
resource management policies.

Two different underlying proportional-share mechanisms are introduced to support this
framework. Lottery scheduling is a novel randomized resource allocation mechanism. An
allocation is performed by holding a lottery, and the resource is granted to the client with
the winning ticket. Stride scheduling is a deterministic resource alocation mechanism that
computes a representation of the time interval, or stride, that each client must wait between
successive allocations. Stride scheduling cross-applies and generalizes elements of rate-based
flow control algorithms designed for networks [DKS90, Zha91, ZK91, PG93] to dynamically
schedule other resources such as processor time. Novel variants of these core mechanisms
are also introduced to provide improved proportional-share accuracy for many workloads. In
addition, a number of new resource-specific techniques are proposed for proportional-share
management of diverse resources including memory, accessto locks, and disk bandwidth.

The proposed proportional-share techniques are compared and evaluated using a variety
of quantitative experiments. Extensive ssimulation results and prototype process-schedul er
implementations for real operating system kernels demonstrate flexible control over a wide
range of resourcesand applications. Theoverall system overhead imposed by these unoptimized
prototypesis comparable to that of the default timesharing policies that they replaced.

16



1.2 Contributions

This thesis makes several research contributions. a versatile new framework for specifying
resource management policies, novel algorithms for proportional-share control over time-
shared resources, and specialized techniques for managing other resource classes. The general
resource management framework is based on direct, proportional-share control over service
rates using tickets and currencies. Its principal featuresinclude:

e Smplicity: An intuitive notion of relative resource shares is used instead of complex,
non-linear, or ad-hoc scheduling parameters. Resource rights vary smoothly with ticket
allocations, allowing precise control over computation rates. The resource rights repre-
sented by tickets also aggregate in a natural additive manner.

e Modularity: Modularity is key to good software engineering practices. Currencies pro-
videexplicit support for modul ar abstraction of resourcerights. The currency abstraction
isanalogousto class-based abstraction of datain object-oriented languageswith multiple
inheritance. Collectionsof ticketscan be named, shared, and protectedin amodular way.
This enables the resource management policies of concurrent modules to be insulated
from one another, facilitating modular decomposition.

e Flexibility: Sophisticated patterns of sharing and protection can be conveniently ex-
pressed for resource rights, including hierarchical organizations and relationships de-
fined by more general acyclic graphs. Resource management policies can be defined for
clients at various levels of abstraction, such as threads, applications, users, and groups.

e Adaptability: Client service rates degrade gracefully in overload situations, and active
clients benefit proportionally from extra resources when some allocations are not fully
utilized. These properties facilitate adaptive applicationsthat can respond to changesin
resource availability.

e Generality: The framework is intended for general-purpose computer systems, and is
not dependent on restrictive assumptions about clients. The same general framework can
be applied to a wide range of diverse resources. It can also serve as a solid foundation
for ssimultaneously managing multiple heterogeneous resources.

An implementation of this general framework requires proportional-share scheduling al-
gorithms that efficiently support dynamic environments. Another contribution of thisthesisis
the development of several new algorithms for proportional-share scheduling of time-shared
resources. Both randomized and deterministic mechanisms are introduced:

17



e Lottery scheduling: A novel randomized resource allocation mechanism that inherently
supports dynamic environments. Lottery scheduling is conceptually simple and easily
implemented. However, it exhibits poor throughput accuracy over short allocation
intervals, and produces high response-time variability for low-throughput clients.

e Multi-winner lottery scheduling: A variant of lottery scheduling that produces better
throughput accuracy and lower response-time variability for many workloads.

e Sride scheduling: A deterministic resource allocation mechanism that implements dy-
namic, proportional-share control over processor time and other resources. Compared
to the randomi zed | ottery-based approaches, stride scheduling achieves significantly im-
proved accuracy over relative throughput rates, with significantly lower response-time
variability.

e Hierarchical stride scheduling: A novel recursive application of the basic stride schedul -
ing technique that provides a tighter bound on throughput accuracy than ordinary stride
scheduling. Hierarchical stride scheduling can also reduce response-time variability for
some workloads.

Additional contributionsincludenew resource-specific techniquesfor dynamic, proportional -
share scheduling of diverse resources. The following mechanisms were devel oped to manage
synchronization resources, space-shared resources, and disk 1/0O bandwidth:

e Ticket inheritance: An extension to the basic algorithms for time-shared resources
to schedule synchronization resources such as lock accesses. This technique enables
proportional-share control over computation rates despite contention for locks.

e Inverselottery scheduling: A variant of |ottery scheduling for dynamic, revocation-based
management of space-shared resources such as memory. A randomized inverse |ottery
selectsa“loser” that isforced to relinquish aresource unit.

e Minimum-funding revocation: A simple deterministic scheme for proportional-share
control over space-sharedresources. A resourceunit isrevoked from theclient expending
the fewest tickets per resource unit. Compared to randomized inverselottery scheduling,
minimum funding revocation is more efficient and converges toward proportional shares
more rapidly.

e Funded delay cost scheduling: A deterministic disk scheduling algorithm presented asa
first step toward proportional-share control over disk bandwidth.

18



1.3 Redated Work

This section places the research described in this thesis in context by presenting an overview
of related work. Computational resource management techniques from a variety of fields are
briefly summarized; a more complete discussion appearsin Chapter 7.

The dominant processor scheduling paradigm in operating systems is priority schedul-
ing [Dei90, Tan92]. Conventional timesharing policies employ dynamic priority adjustment
schemes based on ad-hoc, non-linear functions that are poorly understood. Manipulating
scheduling parameters to achieve specific results in such systems is at best a black art.! At-
tempts to control service rates using timesharing schedulers have been largely unsuccessful,
providing only coarse, limited control [Hel93, FS95]. Priority schedulers also lack desirable
modularity propertiesthat are essential for good software engineering practices.

Fair share schedulersattempt to allocateresources so that users get fair machine sharesover
long periodsof time[Hen84, KL88, Hel93]. These schedulersarelayered ontop of conventional
priority schedulers, and dynamically adjust priorities to push actual usage closer to entitled
shares. The algorithms used by these systems are generally complex, requiring periodic usage
monitoring, complicated dynamic priority adjustments, and administrative parameter tuning to
ensure fairness on atime scale of minutes.

Despite their ad-hoc treatment in most operating systems, priorities are used in a clear
and consistent manner in the domain of real-time systems [BW90]. Real-time schedulers
must ensure that absolute scheduling deadlines are met in order to ensure correctness and
avoid catastrophic failures [Bur91]. The widely-used rate-monotonic scheduling technique
[LL73, SKG91] satically assigns priorities as a monotonic function of the rate of periodic
tasks. A task’spriority doesnot depend on itsimportance; taskswith shorter periods are aways
assigned higher priorities. Another common techniqueis earliest deadline scheduling [LL73],
which always schedules the task with the closest deadline first. Higher-level abstractions
based on real-time scheduling have also been developed [MST93, MST94]. However, real-
time schedulers generally depend upon very restrictive assumptions, such as precise static
knowledge of task execution times and prohibitions on task interactions. Strict limits are also
placed on processor utilization, so that even transient overloads are disallowed.

A number of deterministic proportional-share scheduling algorithms have recently been
proposed [BGP95, FS95, Mah95, SAW95]. Several of thesetechniques[FS95, Mah95, SAW95]
make explicit comparisons to lottery scheduling [WW94], athough none of them demonstrate
support for the higher-level abstractions introduced with lottery scheduling. In general, the

! Anyone who has had the misfortune of trying to implement precise scheduling behavior by setting Unix nice
values can attest to this fact.

19



proportional -share accuracy of these schedulersis better than lottery scheduling, and compara-
ble to stride scheduling. However, the algorithms used by these schedulers require expensive
operationsto transform client state in response to dynamic changes. Since dynamic operations
cannot be implemented efficiently, these approaches are not suitable for supporting the general
resource management framework proposed in thisthess.

Proportional-share al gorithms have al so been designed for rate-based flow control in packet-
switched networks [DKS90, Zha9l, ZK91, PG93]. The core stride scheduling algorithm
presented in this thesis essentially cross-applies and extends elements of the virtual clock
[Zha91] and weighted fair queueing [DKS90] algorithms to the domain of dynamic processor
scheduling. To the best of my knowledge, stride scheduling is the first cross-application of
these techniques for scheduling resources other than network bandwidth. The hierarchical
stride scheduling algorithm introduced in this thesis is a novel recursive application of the
stride-based technique, extended for dynamic environments. An unrelated scheme from the
domain of network traffic management is also ssimilar to randomized lottery scheduling. The
statistical matching technique proposed for the AN2 network exploitsrandomnessto efficiently
support frequent dynamic changesin bandwidth allocations [AOST93].

Microeconomic schedulers are based on resource allocation techniques in real economic
systems [MD88, HH95a, Wel95]. Money encapsul ates resource rights, and a price mechanism
is used to allocate resources. Microeconomic schedulers [DM88, Fer89, WHH* 92, Wel93,
Bog94] typically use auctions to determine prices and allocate resources among clients that
bid monetary funds. However, auction dynamics can be unexpectedly volatile, and bidding
overhead limits the applicability of auctionsto relatively coarse-grained tasks. Other market-
based approachesthat do not rely upon auctions have a so been applied to managing processor
and memory resources [Ell 75, HC92, CH93]. The framework and mechanisms proposed in
this thesis are compatible with a market-based resource management philosophy.

1.4 Organization

This section previews the remaining chapters, and describes the overall organization of the
thesis. The next chapter presents a general framework for specifying resource management
policiesin concurrent systems. The use of tickets and currenciesis shown to facilitate flexible,
modular control over resource management. Chapter 3 introduces several scheduling algo-
rithms that can be used as a substrate for implementing this framework. Both randomized
| ottery-based techniques and deterministic stride-based approaches are presented for achieving
proportional-share control over resource consumption rates. Chapter 4 examines and com-
paresthe performance of these scheduling techniquesin both static and dynamic environments.
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Performance is evaluated by deriving basic analytical results and by conducting a wide range
of quantitative simulation experiments.

Prototype implementations of proportional -share process schedulersfor real operating sys-
tem kernels are described in Chapter 5. The results of quantitative experiments involving a
variety of user-level applicationsare presented to demonstrate flexible, responsive control over
application service rates. Chapter 6 considers the application of proportional-share scheduling
technigues to diverse resources, including memory, disk bandwidth, and access to locks. Ex-
tensions to the core scheduling techniques are presented, and several novel resource-specific
algorithms are also introduced. Chapter 7 discusses a wide variety of research related to
computational resource management in much greater detail than the brief summary presented
in this chapter. Finally, Chapter 8 summarizes the conclusions of this thesis and highlights
opportunities for additional research.
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Chapter 2

Resource Management Framework

Thischapter presentsageneral, flexibleframework for specifying resource management policies
in concurrent systems. Resource rights are encapsulated by abstract, first-class objects called
tickets. Ticket-based policies are expressed using two basic techniques: ticket transfers and
ticketinflation. Ticket transfersallow resourcerightsto be directly transferred and redistributed
among clients. Ticket inflation allowsresourcerightsto be changed by manipulating the overall
supply of tickets. A powerful currency abstraction provides flexible, modular control over
ticket inflation. Currencies aso support the sharing, protecting, and naming of resource rights.
Several example resource management policies are presented to demonstrate the versatility of
this framework.

2.1 Tickets

Resource rights are encapsulated by first-class objects called tickets. Tickets can be issued
in different amounts, so that a single physical ticket may represent any number of logical
tickets. In thisrespect, tickets are similar to monetary notes which are also issued in different
denominations. For example, a single ticket object may represent one hundred tickets, just as
asingle $100 hill represents one hundred separate $1 bills.

Tickets are owned by clients that consume resources. A client is considered to be active
whileitiscompetingto acquiremoreresources. Anactiveclientisentitled to consumeresources
at arate proportional to the number of tickets that it has been allocated. Thus, a client with
twice as many ticketsasanother isentitled to receivetwice as much of aresourcein agiventime
interval. The number of tickets alocated to a client also determinesits entitled response time.
Client response times are defined to be inversely proportional to ticket allocations. Therefore, a
client with twice asmany ticketsas another isentitled to wait only half aslong before acquiring
aresource.
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Figure 2-1: Example Ticket Transfer. A client performs a ticket transfer to a server during a
synchronous remote procedure call (RPC). The server executes with the resource rights of the client,
and then returns those rights during the RPC reply.

Tickets encapsulate resource rights that are abstract, relative, and uniform. Tickets are
abstract because they quantify resource rights independently of machine details. Tickets are
relative since the fraction of aresource that they represent varies dynamically in proportion to
the contention for that resource. Thus, aclient will obtain more of alightly contended resource
than one that is highly contended. In the worst case, a client will receive a share proportional
to its share of tickets in the system. This property facilitates adaptive clients that can benefit
from extra resources when other clients do not fully utilize their allocations. Finally, tickets
are uniform because rights for heterogeneous resources can be homogeneously represented as
tickets. This property permits clients to use quantitative comparisons when making decisions
that involve tradeoffs between different resources.

In general, tickets have properties that are similar to those of money in computational
economies [WHH™92]. The only significant differenceis that tickets are not consumed when
they are used to acquireresources. A client may reuse aticket any number of times, but aticket
may only be used to compete for one resource at atime. In economic terms, a ticket behaves
much like a constant monetary income stream.

2.2 Ticket Transfers

A ticket transfer is an explicit transfer of first-class ticket objects from one client to
another. Ticket transfers can be used to implement resource management policies by directly
redistributing resource rights. Transfers are useful in any situation where one client blocks
waiting for another. For example, Figure 2-1 illustrates the use of a ticket transfer during a
synchronous remote procedurecall (RPC). A client performsatemporary ticket transfer to loan
its resource rights to the server computing on its behalf.
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Ticket transfers also provide a convenient solution to the conventional priority inversion
probleminamanner that issimilar to priority inheritance[ SRL90]. For example, clientswaiting
to acquire alock can temporarily transfer tickets to the current lock owner. This provides the
lock owner with additional resource rights, helping it to obtain alarger share of processor time
so that it can more quickly releasethelock. Unlike priority inheritance, transfersfrom multiple
clients are additive. A client also has the flexibility to split ticket transfers across multiple
clients on which it may be waiting. These features would not make sense in a priority-based
system, since resource rights do not vary smoothly with priorities.

Ticket transfers are capable of specifying any ticket-based resource management policy,
sincetransferscan be used to implement any arbitrary distribution of ticketsto clients. However,
ticket transfers are often too low-level to conveniently express policies. The exclusive use of
ticket transfersimposes a conservation constraint: tickets may be redistributed, but they cannot
be created or destroyed. This constraint ensures that no client can deprive another of resources
without its permission. However, it also complicatesthe specification of many natural policies.

For example, consider a set of processes, each aclient of atime-shared processor resource.
Suppose that a parent process spawns child subprocesses and wants to allocate resource rights
equally to each child. To achievethisgoal, the parent must explicitly coordinateticket transfers
among its children whenever a child processis created or destroyed. Although ticket transfers
alone are capable of supporting arbitrary resource management policies, their specification is
often unnecessarily complex.

2.3 Ticket Inflation and Deflation

Ticket inflation and deflation are alternativesto explicit ticket transfers. Client resource rights
can be escalated by creating more tickets, inflating the total number of tickets in the system.
Similarly, client resource rights can be reduced by destroying tickets, deflating the overall
number of tickets. Ticket inflation and deflation are useful among mutually trusting clients,
since they permit resource rights to be reallocated without explicitly reshuffling tickets among
clients. This can greatly simplify the specification of many resource management policies. For
example, a parent process can allocate resource rights equally to child subprocesses simply by
creating and assigning a fixed number of tickets to each child that is spawned, and destroying
the tickets owned by each child when it terminates.

However, uncontrolled ticket inflation isdangerous, sinceaclient can monopolize aresource
by creating alarge number of tickets. Viewed from an economic perspective, inflationisaform
of theft, sinceit devaluestheticketsowned by all clients. Becauseinflation canviolatedesirable
modularity and insulation properties, it must be either prohibited or strictly controlled.
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Figure 2-2: Ticket and Currency Objects. A ticket object contains an amount denominated in
some currency. A currency object contains aname, alist of backing tickets that fund the currency, alist
of al ticketsissued in the currency, and an amount that contains the total number of active ticketsissued
in the currency.

A key observation is that the desirability of inflation and deflation hinges on trust. Trust
implies permission to appropriate resources without explicit authorization. When trust is
present, explicit ticket transfers are often more cumbersome and restrictive than simple, local
ticket inflation. When trust is absent, misbehaving clientscan useinflation to plunder resources.
Didtilled into a single principle, ticket inflation and deflation should be allowed only within
logical trust boundaries. The next section introduces a powerful abstraction that can be used
to define trust boundaries and safely exploit ticket inflation.

2.4 Ticket Currencies

A ticket currency is a resource management abstraction that contains the effects of ticket
inflation in a modular way. The basic concept of aticket is extended to include a currency in
which theticket isdenominated. Since each ticket isdenominated in acurrency, resource rights
can be expressed in units that are local to each group of mutually trusting clients. A currency
derivesits value from backing tickets that are denominated in more primitive currencies. The
ticketsthat back a currency are said to fund that currency. The value of acurrency can beused to
fund other currenciesor clients by issuing tickets denominated in that currency. The effects of
inflation are locally contained by effectively maintaining an exchange rate between each local
currency and a common base currency that is conserved. The values of tickets denominated in
different currencies are compared by first converting them into units of the base currency.

Figure 2-2 depicts key aspects of ticket and currency objects. A ticket object consists of
an amount denominated in some currency; the notation amount.currency will be used to refer
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Figure 2-3: Example Currency Graph. Two users compete for computing resources. Alice is
executing two tasks, taskl and task2. Bob is executing a single task, task3. The current values in base
unitsfor these tasks are taskl = 2000, task2 = 1000, and task3 = 2000. In general, currency relationships
may form an acyclic graph instead of a strict hierarchy.

to aticket. A currency object consists of a unique name, alist of backing tickets that fund the
currency, alist of ticketsissued in the currency, and an amount that contains the total number
of activeticketsissued in the currency. In addition, each currency should maintain permissions
that determine which clients have the right to create and destroy tickets denominated in that
currency. A variety of well-known schemes can be used to implement permissions [Tan92].
For example, an access control list can be associated with each currency to specify those clients
that have permission to inflate it by creating new tickets.

Currency relationships may form an arbitrary acyclic graph, enabling a wide variety of
different resource management policies. One useful currency configuration is a hierarchy of
currencies. Each currency divides its value into subcurrencies that recursively subdivide and
distribute that value by issuing tickets. Figure 2-3 presents an example currency graph with
a hierarchical tree structure. In addition to the common base currency at the root of the tree,
distinct currencies are associated with each user and task. Two users, Alice and Baob, are
competing for computing resources. The alice currency is backed by 3000 tickets denominated
in the base currency (3000.base), and the bob currency is backed by 2000 tickets denominated
in the base currency (2000.base). Thus, Alice is entitled to 50% more resources than Bab,
sincetheir currenciesare funded at a 3: 2 ratio.
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Aliceis executing two tasks, taskl and task2. She subdivides her allocation between these
tasksin a2:1 ratio using tickets denominated in her own currency — 200.alice and 100.alice.
Since a total of 300 tickets are issued in the alice currency, backed by a total of 3000 base
tickets, the exchange rate between the alice and base currenciesis 1:10. Bob is executing a
single task, task3, and uses his entire allocation to fund it viaa single 100.bob ticket. Since a
total of 100 tickets are issued in the bob currency, backed by atotal of 2000 base tickets, the
bob : base exchange rateis 1: 20. If Bob were to create a second task with equal funding by
issuing another 100.baob ticket, this exchange rate would become 1: 10.

The currency abstraction is useful for flexibly sharing, protecting, and naming resource
rights. Sharing is supported by allowing clients with proper permissions to inflate or deflate a
currency by creating or destroying tickets. For example, a group of mutually trusting clients
can form a currency that pools its collective resource rights in order to simplify resource
management. Protection is guaranteed by maintaining exchange rates that automatically adjust
for intra-currency fluctuations that result from internal inflation or deflation. Currencies also
provide a convenient way to name resource rights at various|evelsof abstraction. For example,
currencies can be used to name the resource rights allocated to arbitrary collections of threads,
tasks, applications, or users.

Since there is nothing comparable to a currency abstraction in conventional operating
systems, it is instructive to examine similar abstractions that are provided in the domain of
programming languages. Various aspects of currencies can be related to features of object-
oriented systems, including data abstraction, class definitions, and multiple inheritance.

For example, currency abstractions for resource rights resemble data abstractions for data
objects. Data abstractions hide and protect representations by restricting access to an abstract
data type. By default, access is provided only through abstract operations exported by the
data type. The code that implements those abstract operations, however, is free to directly
manipulate the underlying representation of the abstract data type. Thus, an abstraction
barrier issaid to exist between the abstract datatype and its underlying representation [LG86] .
A currency defines a resource management abstraction barrier that provides similar properties
for resource rights. By default, clients are not trusted, and are restricted from interfering with
resource management policiesthat distribute resource rights within a currency. The clientsthat
implement a currency’s resource management policy, however, are free to directly manipulate
and redistribute the resource rights associated with that currency.

The use of currencies to structure resource-right relationships also resembles the use of
classesto structure object rel ationshipsin object-oriented systems that support multipleinheri-
tance. A classinheritsitsbehavior from aset of superclasses, which are combined and modified
to specify new behaviors for instances of that class. A currency inheritsits funding from a set
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of backing tickets, which are combined and then redistributed to specify allocationsfor tickets
denominated in that currency. However, one difference between currencies and classesis the
relationship among the objects that they instantiate. When a currency issues a new ticket, it
effectively dilutesthe value of all existing tickets denominated in that currency. In contrast, the
objectsinstantiated by a class need not affect one another.

2.5 ExamplePolicies

A wide variety of resource management policies can be specified using the general frame-
work presented in this chapter. This section examines several different resource management
scenarios, and demonstrates how appropriate policies can be specified.

251 BasicPolicies

Unlikeprioritieswhich specify absol ute precedence constraints, ticketsare specifically designed
to specify relative service rates. Thus, the most basic examples of ticket-based resource
management policies are simple service rate specifications. If the total number of tickets in
a system is fixed, then a ticket allocation directly specifies an absolute share of a resource.
For example, a client with 125 tickets in a system with a total of 1000 tickets will receive a
12.5% resource share. Ticket allocations can also be used to specify relative importance. For
example, aclient that is twice as important as another is smply given twice as many tickets.

Ticket inflation and deflation provide a convenient way for concurrent clientsto implement
resource management policies. For example, cooperative (AND-parallel) clients can indepen-
dently adjust their ticket allocations based upon application-specific estimates of remaining
work. Similarly, competitive (OR-parallel) clients can independently adjust their ticket al-
locations based on application-specific metrics for progress. One concrete example is the
management of concurrent computations that perform heuristic searches. Such computations
typically assign numerical values to summarize the progress made along each search path.
These values can be used directly as ticket assignments, focusing resources on those paths
which are most promising, without starving the exploration of alternative paths.

Tickets can also be used to fund specul ative computations that have the potential to accel-
erate a program’s execution, but are not required for correctness. With relatively small ticket
allocations, speculative computations will be scheduled most frequently when there is little
contention for resources. During periods of high resource contention, they will be scheduled
very infrequently. Thus, very low servicerate specifications can exploit unused resourceswhile
limiting the impact of speculation on more important computations.
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If desired, tickets can also be used to approximate absolute priority levels. For example, a
seriesof currenciescy, ¢, . . ., ¢, can bedefined such that currency c; has 100 timesthe funding
of currency c; . A client with emulated priority level 7 isallocated a singleticket denominated
incurrency c;. Clientsat priority level 7 will be serviced 100 times more frequently than clients
at level 1 — 1, approximating a strict priority ordering.

2.5.2 Administrative Policies

For long-running computations such as those found in engineering and scientific environments,
thereisaneed to regulate the consumption of computing resourcesthat are shared among users
and applications of varying importance [Hel93]. Currencies can be used to isolate the policies
of projects, users, and applicationsfrom one another, and relative funding levels can be used to
specify importance.

For example, a system administrator can allocate ticket levels to different groups based
on criteria such as project importance, resource needs, or real monetary funding. Groups
can subdivide their alocations among users based upon need or status within the group; an
egalitarian approach would give each user an equal allocation. Users can directly allocate their
own resourcerightsto applicationsbased upon factors such asrel ativeimportance or impending
deadlines. Since currency relationships need not follow a strict hierarchy, users may belong to
multiple groups. It is also possible for one group to subsidize another. For example, if group
Aiswaiting for results from group B, it can issue aticket denominated in currency A, and use
it to fund group B.

2.5.3 Interactive Application Policies

For interactive computations such as databases and media-based applications, programmers
and users need the ability to rapidly focus resources on those tasks that are currently important.
In fact, research in computer-human interaction has demonstrated that responsivenessis often
the most significant factor in determining user productivity [DJO0].

Many interactive systems, such as databases and the World Wide Web, are structured
using a client-server framework. Servers process requests from a wide variety of clients that
may demand different levels of service. Some requests may be inherently more important
or time-critical than others. Users may aso vary in importance or willingness to pay a
monetary premium for better service. In such scenarios, ticket allocations can be used to
specify importance, and ticket transfers can be used to allow servers to compute using the
resource rights of requesting clients.
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Another scenario that isbecoming increasingly common isthe need to control the quality of
service when two or more video viewers are displayed [CT94]. Adaptive viewers are capable
of dynamically altering image resolution and frame rates to match current resource availability.
Coupled with dynamic ticket inflation, adaptive viewers permit users to selectively improve
the quality of those video streams to which they are currently paying the most attention. For
example, a graphical control associated with each viewer could be manipulated to smoothly
improve or degrade a viewer’s quality of service by inflating or deflating its ticket allocation.
Alternatively, a preset number of tickets could be associated with the window that owns the
current input focus. Dynamic ticket transfers make it possible to shift resources as the focus
changes, e.g., in response to mouse movements. With an input device capable of tracking eye
movements, a similar technique could even be used to automatically adjust the performance of
applications based upon the user’s visual focal point.

In addition to user-directed control over resource management, programmatic application-
level control can also be used to improve responsiveness despite resource limitations [DJOO,
TL93]. For example, agraphics-intensive program could devote alarge share of its processing
resources to a rendering operation until it has displayed a crude but usable outline or wire-
frame. The share of resources devoted to rendering could then be reduced via ticket deflation,
allowing amore polished image to be computed while most resources are devoted to improving
the responsiveness of more critical operations.
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Chapter 3
Proportional-Share M echanisms

This chapter presents mechanisms that can be used to efficiently implement the resource
management framework described in Chapter 2. Several novel scheduling algorithms are
introduced, including both randomized and deterministic techniquesthat provide proportional -
share control over time-shared resources. The algorithms are presented in the order that
they were developed, followed by a discussion of their application to the general resource
management framework.

One common theme is the desire to achieve proportional sharing with a high degree of
accuracy. The throughput accuracy of a proportional-share scheduler can be characterized
by measuring the difference between the specified and actual number of allocations that a
client receives during a series of allocations. If aclient hast tickets in a system with a total
of T tickets, then its specified allocation after n, consecutive alocationsis n,t/T. Due to
quantization, it is typically impossible to achieve thisideal exactly. A client’s absolute error
is defined as the absolute value of the difference between its specified and actual number of
allocations. The pairwise relative error between clients ¢; and c; is defined as the absolute
error for the subsystem containing only ¢; and c;, whereT' = ¢, +¢;, and n,, isthetotal number
of allocationsreceived by both clients.

Another key issue is the challenge of providing efficient, systematic support for dynamic
operations, such as modifications to ticket allocations, and changes in the number of clients
competing for aresource. Support for fast dynamic operationsisalso requiredfor low-overhead
implementations of higher-level abstractions such as ticket transfers, ticket inflation, and ticket
currencies. Many proportional-share mechanisms that are perfectly reasonable for static envi-
ronments exhibit ad-hoc behavior or unacceptable performance in dynamic environments.

After initial experimentation with a variety of different techniques, | discovered that ran-
domization could be exploited to avoid most of the complexity associated with dynamic op-
erations. This realization led to the development of lottery scheduling, a new randomized
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resource allocation mechanism [WW94]. Lottery scheduling performs an allocation by hold-
ing alottery; theresourceisgranted to the client with thewinning ticket. Duetoitsinherent use
of randomization, a client’s expected relative error and expected absolute error under lottery
scheduling are both O(,/n,). Thus, lottery scheduling can exhibit substantial variability over
small numbers of alocations. Attempts to limit this variability resulted in an investigation of
multi-winner lottery scheduling, a hybrid technique with both randomized and deterministic
components.

A desire for even more predictable behavior over shorter time scales prompted a renewed
effort to develop a deterministic algorithm with efficient support for dynamic operations.
Optimization of an inefficient algorithm that | originally developed before the conception of
lottery scheduling resulted in stride scheduling [WW95]. Stride scheduling is a deterministic
algorithm that computes a representation of the time interval, or stride, that each client must
wait between successive allocations. Under stride scheduling, the relative error for any pair of
clientsis never greater than one, independent of n,. However, for skewed ticket distributions
itisstill possible for aclient to have O(n..) absolute error, where .. is the number of clients.

| later discovered that the core all ocation algorithm used in stride scheduling is nearly iden-
tical to elements of rate-based flow-control algorithms designed for packet-switched networks
[DKS90, Zha9l, ZK91, PG93]. Thus, stride scheduling can be viewed as a cross-application
of these networking algorithmsto schedule other resources such as processor time. However,
the original network-oriented algorithms did not address the issue of dynamic operations, such
as changes to ticket allocations. Since these operations are extremely important in domains
such as processor scheduling, | developed new techniques to efficiently support them. These
technigues can al so be used to support frequent changesin bandwidth allocationsfor networks.

Finally, dissatisfaction with the schedules produced by stride scheduling for skewed ticket
distributionsled to an improved hierarchical stride scheduling algorithm that providesatighter
O(lgn.) bound on each client’s absolute error. Hierarchical stride scheduling is a novel
recursive application of the basic technique that achieves better throughput accuracy than
previous schemes, and can reduce response-time variability for some workloads.

The remainder of this chapter presents|ottery scheduling, multi-winner lottery scheduling,
stride scheduling, and hierarchical stride scheduling. Each mechanismisdescribedin aseparate
section that begins with a description of the basic algorithm, followed by a discussion of
extensions that support dynamic operations and irregular quantum sizes. Source code and
examples are included to illustrate each mechanism. The chapter concludes by demonstrating
that each presented mechanism is capable of serving as a substrate for the general resource
management framework presented in Chapter 2. Detailed simulation results, performance
analyses, and comparisons of the mechanisms are presented in Chapter 4.
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3.1 Lottery Scheduling

Lottery scheduling is a randomized resource allocation mechanism for time-shared resources.
Each allocation is determined by holding alottery that randomly selects a winning ticket from
the set of al tickets competing for aresource. The resource is granted to the client that holds
the winning ticket. This simple operation effectively allocates resources to competing clients
in proportion to the number of tickets that they hold. This section first presents the basic
lottery scheduling algorithm, and then introduces extensions that support dynamic operations
and nonuniform quanta.

3.1.1 BasicAlgorithm

The core lottery scheduling idea is to randomly select a ticket from the set of al tickets
competing for a resource. Since each ticket has an equal probability of being selected, the
probability that a particular client will be selected is directly proportional to the number of
ticketsthat it has been assigned.

In general, there are n,. clients competing for aresource, and each client ¢; has t; tickets.
Thus, there are atotal of 7" = "7, ¢; tickets competing for the resource. The probability p;
that client ¢; will win a particular lottery is simply ¢; /7. After n, identical allocations, the
expected number of winsw; for client ¢; is E|w;] = n, p;, with varianceafui = n.pi(1 — p;).
Thus, the expected allocation of resources to clients is proportional to the number of tickets
that they hold. Since the scheduling algorithm is randomized, the actual alocated proportions
are not guaranteed to match the expected proportions exactly. However, the disparity between
them decreases as the number of alocations increases. More precisely, a client’s expected
relative error and expected absolute error are both O(,/n,). Since error increases slowly with
n,, accuracy steadily improves when error is measured as a percentage of n,,.

One straightforward way to implement alottery scheduler isto randomly select a winning
ticket, and then search alist of clientsto locatethe client holding that ticket. Figure 3-1 presents
an examplelist-based |ottery. Fiveclientsare competing for aresourcewith atotal of 20 tickets.
The thirteenth ticket is randomly chosen, and the client list is searched to determine the client
holding the winning ticket. In this example, the third client is the winner, since its region of
the ticket space contains the winning ticket.

Figure 3-2 lists ANSI C code for a basic list-based lottery scheduler. For simplicity, it is
assumed that the set of clients is static, and that client ticket assignments are fixed. These
restrictions will be relaxed in subsequent sections to permit more dynamic behavior. Each
client must be initialized via client_init() before any allocations are performed by allocate).
The allocate() operation begins by calling fast_random() to generate a uniformly-distributed
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Figure 3-1: Example List-Based Lottery. Five clients compete in a list-based lottery with a total
of 20 tickets. The thirteenth ticket israndomly selected, and the client list is searched for the winner. In
this example, the third client is the winner.

/* per-client state */
typedef struct {

int tickets;
} *client_t;

/* current resource owner */
clientt current;

/* list of clients competing for resource */
listt list

/* global ticket sum */
i nt global_tickets = 0;

/* initialize client with specified allocation */
voi d client_init(clientt c, int tickets)
{
/* initialize client state, update global sum */
c->tickets = tickets;
gl obal tickets += tickets;

/* join competition for resource */
listinsert(list, c);

Figure 3-2: List-Based Lottery Scheduling Algorithm. ANSI C code for scheduling a static set
of clientsusing alist-based lottery. An allocation requires O(n.) timeto search thelist of clientsfor the

/* proportional-share resource allocation */
voi d allocate()
e

int winner, sum

clientt c;

/* randomly select winning ticket */
wi nner = fast _randon() % gl obal _tickets;

/* search list to find client with winning ticket */
sum = 0;
for (¢ = listfirst(list);
c !'= NULL;
c = listnext(list, c))
{
/* update running sum, stop at winner */
sum += c->tickets;
if (sum> winner)
br eak;
}

/* grant resource to winner for quantum */
current = c;
useresource(current);

winning ticket. A simple doubly-linked list can be used to implement constant-time list operations.
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pseudo-random integer. Numerous techniques exist for generating random numbers. For
example, the Park-Miller generator efficiently produces high-quality random numbers that are
uniformly distributed between 0 and 23! — 1 [PM88, Car90]. The random number produced
by fast_random() is then scaled! to reside in the interval [0, global_tickets—1], which will be
referred to as the ticket space. The scaled random number, winner, represents the offset of the
winning ticket in the ticket space. The ticket spaceisthen scanned by traversing the client list,
accumulating a running ticket sum until the winning offset is reached. The client holding the
ticket at the winning offset is selected as the winner.

Performing an allocation using the simplelist-based | ottery algorithmin Figure 3-2 requires
O(n.) timeto traversethelist of clients. Various optimizations can reduce the average number
of clientsthat must be examined. For example, if the distribution of ticketsto clientsis uneven,
ordering the clients by decreasing ticket counts can substantially reduce the average search
length. Since those clients with the largest number of tickets will be selected most frequently,
asimple “move-to-front” heuristic can also be very effective.

For large n.., atree-based implementation is more efficient, requiring only O(lg n.) opera-
tionsto perform an allocation. A tree-based implementation would al so be more appropriatefor
adistributed lottery scheduler. Figure 3-3lists ANSI C code for atree-based lottery scheduling
algorithm. Although many tree-based datastructuresare possible, abalanced binary treeisused
toillustrate the algorithm. Every node has the usual tree linksto its parent, left child, and right
child, as well as aticket count. Each leaf node represents an individual client. Each internal
node represents the group of clients (leaf nodes) that it covers, and contains their aggregate
ticket sum. An alocation is performed by tracing a path from the root of the treeto aleaf. At
each level, the child that coversthe region of the ticket space which containsthe winning ticket
isfollowed. When aleaf node is reached, it is selected as the winning client.

Figure 3-4 illustrates an example tree-based lottery. Eight clients are competing for a
resource with atotal of 48 tickets. The twenty-fifth ticket is randomly chosen, and a root-to-
leaf pathis traversed to locate the winning client. Since the winning offset does not appear in
the region of the ticket space covered by the root’s left child, its right child is followed. The
winning offset is adjusted from 25 to 15 to reflect the new subregion of the ticket space that
excludesthefirst ten tickets. At thissecond level, the adjusted offset of 15 fallswithin the left
child’sregion of the ticket space. Finally, itsright child is followed, with an adjusted winning
offset of 3. Sincethisnodeisaledf, it is selected as the winning client.

LAn exact scaling method would convert the random number from an integer to a floating-point number
between 0 and 1, multiply it by global_tickets, and then convert the result back to the nearest integer. A more
efficient scaling method, used in Figure 3-2, is to simply compute the remainder of the random number modulo
global_tickets. This method works extremely well under the reasonable assumption that global _tickets < 231.
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/* binary tree node */
typedef struct {

/* proportional-share resource allocation */
voi d allocate()

{
struct node *left, *right, *parent; int wnner;
int tickets; nodet n;

} *nodet;

/* current resource owner */
node_t current;

/* tree of clients competing for resource */

/* randomly select winning ticket */
wi nner = fast_random() %root->tickets;

/* traverse root-to-leaf path to find winner */
for (n =root; !Inodedsleaf(n); )

node_t root; if (n->left !I'= NULL &&
n->left->tickets > wnner)
/* initialize client with specified allocation */ n =n->eft;
voi d client_init(nodet c, int tickets) el se
{
nodet n; /* adjust relative offset for winner */
n = n->right;
/* attach client to tree as leaf */ Wi nner -= n->left->tickets;
treednsert(root, c); }
/* initialize client state, update ancestor ticket sums */ /* use resource */
c->tickets = tickets; current = n;
for (n = c->parent; useresource(current);

n !'= NULL;
n = n->parent)
n->tickets += tickets;

Figure 3-3. Tree-Based Lottery Scheduling Algorithm. ANSI C code for scheduling a static
set of clients using a tree-based lottery. The main data structure is a binary tree of nodes. Each node
represents either a client (leaf) or a group of clients and their aggregate ticket sum (internal node). An
alocation requires O(lg n..) time to locate the winning ticket.
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Figure 3-4: Example Tree-Based L ottery. Eight clients competein atree-based |ottery with atotal
of 48 tickets. Each square leaf node represents a client and its associated ticket allocation. Each round
internal node contains the ticket sum for the leaves that it covers. In this example, the winning ticket
number is 25, and the winning client isfound by traversing the root-to-leaf path indicated by the arrows.

3.1.2 Dynamic Operations

The basic algorithms presented in Figures 3-2 and 3-3 do not support dynamic operations,
such as changes in the number of clients competing for a resource, and modificationsto client
ticket allocations. Fortunately, the use of randomization makes adding such support trivial.
Since each random allocationisindependent, thereisno per-client stateto updatein responseto
dynamic changes. Becauselottery scheduling iseffectively stateless, agreat deal of complexity
iseliminated. For each allocation, every client is given afair chance of winning proportional
to its share of the total number of tickets. Any dynamic changes are immediately reflected in
the next allocation decision, and no special actions are required.

Figure 3-5 lists ANSI C code that trivially extends the basic list-based algorithm to effi-
ciently handle dynamic changes. The time complexity of the client_modify(), client_leave(),
and client_join() operations is O(1). Figure 3-6 lists the corresponding extensions for the
basic tree-based algorithm. These operations require O(lgn..) time to update the ticket sums
for each of a client’s ancestors. The list-based client_modify() operation and the tree-based
node_modify() operation update global scheduling state only for clientsthat are actively com-
peting for resources.?

2The client_is_active() predicate can be implemented simply by associating an explicit active flag with each
client. This flag should be set in client_join() and reset in client_leave(). An aternative implementation of
client_is_active() could simply check if the client’slist-link fieldsare NULL. Similar approaches can be employed
to define the node_is_active() predicate used in the tree-based implementation of node_modify().
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/* dynamically modify client allocation by deltatickets */
voi d client.modify(clientt c, int delta)
{

/* update client tickets */

c->tickets += delta;

/* update global ticket sum if active */
if (clientis.active(c))
gl obal tickets += delta;

/* join competition for resource */

voi d client_join(clientt c)

{
/* update global ticket sum, link into list */
gl obal tickets += c->tickets;
listinsert(list, c);

}

/* leave competition for resource */
voi d client_leave(client t c)

/* update global ticket sum, unlink from list */
global tickets -= c->tickets;
l'istremve(list, c);

Figure 3-5: Dynamic Operations. List-Based Lottery. ANSI C code to support dynamic
operations for alist-based lottery scheduler. All operations executein constant time.

/* dynamically modify node allocation by deltatickets */
voi d node_modify(nodet node, int delta)

{

nodet n;

/* update node tickets */
node- >tickets += delta;

/* propagate changes to ancestorsif active */
i f (node. s_active(node))
for (n = node->parent;
n = NULL;
n = n->parent)
n->tickets += delta;

/* join competition for resource */

voi d client_join(nodet c)

{
/* add node to tree, update ticket sums */
treednsert(root, c);
node_modi fy(c->parent, c->tickets);

}

/* leave competition for resource */
voi d client_leave( nodet c)

/* update ticket sums, remove node from tree */
node_nodi fy(c->parent, - c->tickets);
treerenove(root, c);

}

Figure 3-6: Dynamic Operations. Tree-Based Lottery. ANSI C code to support dynamic
operationsfor atree-based |ottery scheduler. All operationsrequire O(lg n..) time to update ticket sums.




3.1.3 Nonuniform Quanta

With the basic lottery scheduling a gorithms presented in Figures 3-2 and 3-3, aclient that does
not consume its entire allocated quantum will receive less than its entitled share. Similarly,
it may be possible for a client’s usage to exceed a standard quantum in some situations. For
example, under a non-preemptive schedul er, the amount of time that clientshold aresource can
vary considerably.

Fractional and variable-size quanta are handled by adjusting a client’s ticket allocation to
compensate for its nonuniform quantum usage. When a client consumes a fraction f of its
allocated time quantum, it is assigned transient compensation tickets that alter its overall ticket
value by 1/f until the client starts its next quantum. This ensures that a client’s expected
resource consumption, equal to f times its per-lottery win probability p, is adjusted by 1/ f
to match its alocated share. If f < 1, then the client will receive positive compensation
tickets, inflating its effective ticket allocation. If f > 1, then the client will receive negative
compensation tickets, deflating its effective all ocation.

To demonstrate that compensation tickets have the desired effect, consider a client that
ownst of the 7" tickets competing for aresource. Suppose that when the client next wins the
resourcelottery, it usesafraction f of itsallocated quantum. Theclientisthenassignedt/f —t
transient compensation tickets, changing its overall ticket value to ¢/ f. These compensation
tickets persist only until the client wins another allocation.

Without any compensation, the client’ sexpected waiting time until its next all ocationwould
beT'/t — 1 quanta. Compensation alters both the client’sticket allocation and the total number
of tickets competing for the resource. With compensation, the client’s expected waiting time
becomes (T'+t/f —t)/(t/f) — 1, which reducesto fT/t — f. Measured from the start of its
first allocation to the start of its next allocation, the client’s expected resource usageis f quanta
over atime period consisting of f + (f7T/t — f) = fT/t quanta. Thus, the client receivesa
resource shareof f/(fT/t) =t/T, asdesired.

Note that no assumptions were made regarding the client’sresource usage during its second
allocation. Compensation tickets produce the correct expected behavior even when f varies
dynamically, since the client’s waiting time is immediately adjusted after every allocation. A
malicious client is therefore unable to boost its resource share by varying f in an attempt to
“game” the system.

Figure3-7listsANSI C codefor compensating aclient that uses elapsed resourcetime units
instead of astandard quantum, measured in the sametime units. The per-client scheduling state
isextended to include anew compensatefield that containsthe current number of compensation
tickets associated with the client. The compensate() operation should be invoked immediately
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/* per-client state */ /* compensate client for nonuniform quantum usage */

typedef struct { voi d compensate(clientt c, int el apsed)
{
int tickets, compensate; int old, new, net_change;

} *client.t;

/* compute original allocation */
/* standard quantum in real time units (e.g. IM cycles) */ old = c->tickets - c->conpensate;
const int quantum = (1 << 20);
/* compute current compensation */
new = (old * quantun) / el apsed;
c->conpensate = new - ol d;

/* compute change, modify effective allocation */
net change = new - c->tickets;
client modify(c, net_change);

Figure3-7: Compensation Ticket Assignment. ANSI C codeto compensateaclient for consuming
elapsed time units of aresourceinstead of astandard timeslice of quantum time units. Thiscode assumes
a list-based lottery; a tree-based lottery would simply replace the invocation of client_modify() with
node_modify().

after every alocation; compensate(current, el gpsed) should be added to the end of the all ocate()
operation. Compensation tickets are transient, and only persist until the client starts its next
quantum. Thus, compensate() initially forgets any previous compensation, and computes a
new client compensation value based on elgpsed. The client’s compensate field is updated,
and the overall difference between the previous compensated ticket value and its new oneis
computed as net_change. Finadly, the client’s ticket allocation is dynamically modified via
client_modify/().

For example, suppose clients A and B have each been allocated 400 tickets. Client A
always consumes its entire quantum, while client B uses only one-fifth of its quantum before
yielding the resource. Since both A and B have equal ticket assignments, they are equally
likely to win a lottery when both compete for the same resource. However, client B uses
only f = 1/5 of its alocated time, alowing client A to consume five times as much of the
resource, inviolation of their 1: 1ticket ratio. To remedy thissituation, client B isgranted 1600
compensation tickets when it yields the resource. When B next competes for the resource, its
total funding will be 400/ f = 2000 tickets. Thus, on average B will win the resource lottery
five times as often as A, each time consuming 1/5 as much of its quantum as A, achieving the
desired 1:1 allocation ratio.
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3.2 Multi-Winner Lottery Scheduling

Multi-winner lottery scheduling is a generalization of the basic lottery scheduling technique.
Instead of selecting a single winner per lottery, n,, winners are selected, and each winner is
granted the use of the resource for one quantum. The set of n,, consecutive quanta allocated
by a single multi-winner lottery will be referred to as a superquantum. This section presents
the basic multi-winner lottery algorithm, followed by a discussion of extensions for dynamic
operations and nonuniform quanta.

3.2.1 BasicAlgorithm

The multi-winner lottery scheduling algorithm isahybrid technique with both randomized and
deterministic components. The first winner in a superquantum is selected randomly, and the
remaining n,, — 1 winners are selected deterministically at fixed offsets relative to the first
winner. These offsets appear at regular, equally-spaced intervalsin theticket space [0, T' — 1],
where 7' is the total number of tickets competing for the resource. More formally, the n,,
winning offsets are located at (r + z’%) mod 7" in the ticket space, where r is a random
number and index i € [0, n,, — 1] yieldsthe i*" winning offset.

Sinceindividua winnerswithin a superquantum are uniformly distributed across the ticket
space, multi-winner lotteries directly implement aform of short-term, proportional-share fair-
ness. Because the spacing between winnersisT'/n,, tickets, aclient with ¢ ticketsis determin-
istically guaranteed to receive at least |7, %J quanta per superquantum. However, there are
no deterministic guarantees for clients with fewer than 7'/n,, tickets.

An appropriatevaluefor n,, can be computed by choosing the desired level of deterministic
guarantees. Larger values of n,, result in better deterministic approximations to specified
ticket allocations, reducing the effects of random error. Ensuring that a client deterministically
receivesat |east one quantum per superquantum substantially increasesits throughput accuracy
and dramatically reduces its response-time variability. Setting n,, > 1/f guarantees that all
clientsentitledto at least afraction f of theresourcewill be selected during each superquantum.
For example, if deterministic guarantees are required for al clients with resource shares of at
least 12.5%, then avalue of n,, > 8 should be used.

Figure 3-8 presents an example multi-winner lottery. Five clients compete for a resource
with a total of 7" = 20 tickets. The thirteenth ticket is randomly chosen, resulting in the
selection of the third client as the first winner. Since n,, = 4, three additional winners are
selected in the same superquantum, with relative offsets that are multiplesof 7'/4 = 5 tickets.
Note that the first client with 10 tickets is guaranteed to receive 2 out of every 4 quanta, and
the third client with 5 tickets is guaranteed to receive 1 out of every 4 quanta. The choice of
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total = 20 #win =4
random [0..19] = 13 total / #win =5
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Figure 3-8: Example Multi-Winner Lottery. Five clients competein afour-winner lottery with a
total of 20 tickets. The first winner is selected at a randomly-generated offset of 13, and the remaining
winners are selected at relative offsets with a deterministic spacing of 5 tickets.

the client that receives the remaining quantum is effectively determined by the random number
generated for the superquantum.

Although the basic multi-winner lottery mechanismisvery simple, the use of a superquan-
tum introduces a few complications. One issue is the ordering of winning clients within a
superquantum. The simplest option isto schedule the clientsin the order that they are selected.
However, this can result in the allocation of several consecutive quanta to clients holding a
relatively large number of tickets. While this is desirable in some cases to reduce context-
switching overhead, the reduced interleaving also increases response time variability. Another
straightforward approach with improved interleaving is to schedule the winning clients using
an ordering defined by a fixed or pseudo-random permutation.

Figure 3-9 lists ANSI C code for a list-based multi-winner lottery algorithm that sched-
ules winners within a superquantum using a fixed permuted order. The per-client state and
client_init() operation are identical to those listed in Figure 3-2. Additional global stateisin-
troduced to handle the scheduling of winnerswithin a superquantum. The intra_schedule array
defines afixed permutation of winnerswithin a superquantum, such that successivewinnersare
maximally separated from one another in theticket space. Therandom offset for thefirst winner
is maintained by intra first, and the deterministic spacing between winners is maintained by
intra_space. The current intra-superquantum winner number is stored by intra_count.

The allocate() operationinitially checksif anew superquantum should be started by inspect-
ing intra_count. When a superquantum is started, a new random winning offset is generated,
and a new deterministic inter-winner spacing is computed. These same values are then used
for al of the alocationswithin the superquantum. Each allocation determines the next winner
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/* per-client state */
typedef struct {

int tickets;
} *client_t;

/* winners per superquantum (e.g. 4) */
const int n.winners = 4;

/* current resource owner */
clientt current;

/* list of clients competing for resource */
listt list;

/* global ticket sum */
i nt global_tickets = 0;

/* intra-superquantum schedule (e.g. permuted) */
int intraschedulel] = {0, 2, 1, 3 }
int intrafirst, intra_space

i nt intra_count = O;

/* locate client with winning offset */
client_t find_winner(int w nner)

{
int sum= 0;
clientt c;

/* search list to find client with winning offset */

for (¢ = listfirst(list);
c !'= NULL;
c =listnext(list, c))
{

/* update running sum, stop at winner */
sum += c->tickets;
if (sum> winner)

return(c);

/* initialize client with specified allocation */
voi d clientinit(clientt c, int tickets)
{
/* initialize client state, update global sum */
c->tickets = tickets;
gl obal tickets += tickets;

/* join competition for resource */
listinsert(list, c);

}

/* proportional-share resource allocation */
voi d allocate()

{

int wnner;

/* handle new superquantum */

if (intracount == 0)
{
/* generate random offset, inter-winner spacing */
intrafirst =

fast randon() % gl obal tickets;
intraspace = global tickets / nw nners;

}
/* select next winner within superquantum */
Wi nner = intrafirst +

intraspace * intraschedul e[intracount];

/* handle ticket-space wrap-around */
if (wnner >= global tickets)
wi nner -= global tickets;

/* advance intra-superquantum winner count */
if (++intracount == n.winners)
intracount = 0;

/* grant resource to winner for quantum */
current = findwi nner (w nner);
use_resource(current);

Figure 3-9: Multi-Winner Lottery Scheduling Algorithm. ANSI C codefor scheduling astatic
set of clients using a list-based multi-winner lottery. An allocation requires O(n.) time to search the

list of clients for the winning ticket.
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by computing its offset within the ticket space. This winning offset is the sum of the initial
random offset, intra first, and a deterministic offset based on the relative position of the next
winner, intra_space x intra_sched[intra_count]. Thus, successive winners within the same su-
perquantum are separated by some multiple of intra_space tickets. The implementation of the
find_winner() operation isidentical to the linear search used in Figure 3-2, and is presented as
a separate abstraction to highlight the key changesto allocate().

A moreefficient version of the codelisted in Figure 3-9 can beimplemented by selecting all
of the superquantum winners during asingle scan of the client list. By avoiding a separate pass
for each allocation, this optimization would also decrease the cost of performing an allocation
by nearly afactor of n,, over ordinary lottery scheduling. The implementation of atree-based
multi-winner lottery would aso be very similar to the list-based code. The find_winner()
function can simply be changed to use the tree-based search employed in Figure 3-3, and
referencesto global _tickets can be replaced by the root node's ticketsfield.

The multi-winner lottery algorithm is very similar to the stochastic remainder technique
used inthefield of genetic algorithmsfor randomized popul ation mating and selection [ Gol 89].
This technique can also be applied to scheduling time-shared resources, although it was not
designed for that purpose. Using the same scheduling terminology introduced earlier, for
each superquantum consisting of n,, consecutive quanta, the stochastic remainder technique
allocates each client nw% quanta, where ¢ is the number of tickets held by that client, and
T is the total number of tickets held by all clients. The integer part of this expression is
deterministically allocated, and the fractional remainder is stochastically allocated by lottery.

For exampl e, consider asuperquantumwithn,, = 10, andtwoclients, A and B, witha2:1
ticket allocation ratio. Client A receives |10 x 2| = 6 quanta, and B receives [10 X 5] = 3
quanta. Thus, A is deterministically guaranteed to receive six quanta out of every ten; B is
guaranteed to receive three quanta out of every ten. The remaining quantum is allocated by
lottery with probability (10 x ) — 6 = 2 toclient A, and (10 x 3) — 3 = 3 to client B.

The multi-winner lottery algorithm and the stochastic remainder technique both provide
the same deterministic guarantee: aclient with ¢ ticketswill receiveat least |n,, =] quantaper
superquantum. The remaining quanta are allocated stochastically. The stochastic remainder
approach uses independent random numbersto perform these all ocations, while amulti-winner
lottery bases its allocations on a single random number. A multi-winner |ottery evenly divides
the ticket space into regions, and selects a winner from each region by lottery. This distinc-
tion provides severa implementation advantages. For example, fewer random numbers are
generated; the same random number is effectively reused within a superquantum. Also, fewer
expensive arithmetic operations are required. In addition, if n,, is chosen to be a power of two,
then all divisions can be replaced with efficient shift operations.
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/* dynamically modify client allocation by deltatickets */ /* join competition for resource */

voi d client-modify(clientt c, int delta) voi d clientjoin(clientt c)
{
/* update client tickets */ /* force start of new superquantum */
c->tickets += delta; intracount = 0;
/* adjust global stateif active */ /* update global ticket sum, link into list */
if (clientdis.active(c)) gl obal tickets += c->tickets;
{ listinsert(list, c);
/* force start of new superquantum */ }

intracount = 0;
/* leave competition for resource */

/* update global ticket sum */ voi d client_leave(client t c)
gl obal tickets += delta; {
} /* force start of new superquantum */
} intracount = 0;

/* update global ticket sum, unlink from list */
global tickets -= c->tickets;
|istremove(list, c);

}

Figure 3-10: Dynamic Operations. Multi-Winner Lottery. ANSI C code to support dy-
namic operations for a list-based multi-winner lottery scheduler. Each operation terminates the current
superquantum. All operations execute in constant time.

3.2.2 Dynamic Operations

The use of a superquantum also complicates operations that dynamically modify the set
of competing clients or their relative ticket allocations. For a single-winner lottery, each
allocationisindependent, and thereis no state that must be transformed in response to dynamic
changes. For amulti-winner lottery, the current state of the intra-superquantum schedule must
be considered.

Randomization can be used to once again sidestep the complexities of dynamic modifi-
cations, by scheduling winners within a superquantum in a pseudo-random order. After any
dynamic change, the current superquantum is ssimply prematurely terminated and a new su-
perquantum is started. This same technique can also be used with an intra-superquantum
schedule based on a fixed permutation, such as the one listed in Figure 3-9. Since winners
are maximally separated in the ticket space, premature termination of a superquantum after
w winners have been selected approximates the behavior exhibited by a multi-winner lottery
scheduler with n,, = w. For example, the first two winners scheduled by the four-winner
lottery listed in Figure 3-9 are identical to the winners that would be selected by a two-winner
lottery. When n,, and w are perfect powers of two, this approximation will be exact. In other

47



cases, the use of a randomly-generated initial offset still ensures that no systematic bias will
develop across superquanta. This is important, because systematic bias could potentially be
exploited by clients attempting to cheat the system.

Figure3-101istsANSI C codethat trivially extendsthe basic multi-winner |ottery algorithm
to handle dynamic changes. The premature termination of a superquantum allows dynamic
operationsto be supported in aprincipled manner. However, if dynamic changesoccur with high
frequency, then the effective superquantum size will be reduced, weakening the deterministic
guarantees that it was intended to provide. In the extreme case where a dynamic change
occurs after every alocation, this scheme reduces to an ordinary single-winner lottery. |
was unable to find other systematic dynamic techniques that work with alternative ordering
schemes. In general, the use of a superquantum introduces state that may require complicated
transformations to avoid incorrect dynamic behavior.

3.2.3 Nonuniform Quanta

Fractional and variable-size quanta are supported by the same compensation ticket technique
described for ordinary lottery scheduling. The code presented for assigning compensation
tickets in Figure 3-7 can be used without modification. However, for multi-winner lotteries,
the assignment of compensation tickets forces the start of a new superquantum, since the
multi-winner version of client_modify() terminates the current superquantum. Thus, if clients
frequently use nonuniform quantum sizes, the effective superquantum size will be reduced,
weakening the deterministic guarantees provided by the multi-winner lottery.

The need to start a new superquantum after every nonuniform quantum can be avoided by
using a more complex compensation scheme. Instead of invoking compensate() after every
allocation, compensation tickets can be assigned after each complete superquantum. This
approach requires keeping track of each winner’'s cumulative allocation count and resource
usage over the entire superquantum to determine appropriate compensation val ues.

3.3 Deterministic Stride Scheduling

Stride scheduling is a deterministic allocation mechanism for time-shared resources. Stride
scheduling implements proportional -share control over processor-time and other resources by
cross-applying and generalizing elements of rate-based flow control agorithms designed for
networks [DKS90, Zha91, ZK91, PG93]. New techniques areintroduced to efficiently support
dynamic operations, such as modifications to ticket allocations, and changes to the number of
clients competing for aresource.
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/* per-client state */
typedef struct {

int tickets, stride, pass;
} *client_t;

/* large integer stride constant (e.g. 1M) */
const int stridel = (1 << 20);

/* current resource owner */

/* proportional-share resource alocation */
voi d allocate()

{

/* select client with minimum pass value */
current = queuerenove.m n(queue);

/* use resource for quantum */
useresource(current);

/* compute next pass using stride */

clientt current; current->pass += current->stride;
queue. nsert(queue, current);
/* queue of clients competing for resource */ }

queuet queue

/* initialize client with specified allocation */
voi d clientdinit(clientt c, int tickets)
{
/* strideis inverse of tickets */
c->tickets = tickets;
c->stride = stridel / tickets;
c->pass = c->stride;

/* join competition for resource */
queued nsert (queue, c);

Figure 3-11: Basic Stride Scheduling Algorithm. ANSI C code for scheduling a static set of
clients. Queue manipulations can be performed in O(1g n..) time by using an appropriate data structure.

3.3.1 BasicAlgorithm

The core stride scheduling idea is to compute a representation of the time interval, or stride,
that a client must wait between successive allocations. The client with the smallest stride will
be scheduled most frequently. A client with half the stride of another will execute twice as
quickly; a client with double the stride of another will execute twice as slowly. Strides are
represented in virtual time units called passes, instead of units of real time such as seconds.

Three state variables are associated with each client: tickets, stride, and pass. The tickets
field specifies the client’s resource allocation, relative to other clients. The stride field is
inversely proportional to tickets, and represents the interval between selections, measured in
passes. The passfield representsthevirtual timeindex for theclient’snext selection. Performing
aresource allocation is very simple: the client with the minimum passis selected, and its pass
is advanced by its stride. 1f more than one client has the same minimum pass value, then any
of them may be selected. A reasonable deterministic approach is to use a consistent ordering
to break ties, such as one defined by unique client identifiers.
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The only source of relative error under stride scheduling is due to quantization. Thus, the
therelative error for any pair of clientsis never greater than one, independent of n,. However,
for skewed ticket distributionsit isstill possiblefor aclient to have O(n..) absolute error, where
n. isthe number of clients. Nevertheless, stride scheduling is considerably more accurate than
lottery scheduling, since its error does not grow with the number of allocations.

Figure 3-11 lists ANSI C code for the basic stride scheduling algorithm. For simplicity, a
static set of clientswith fixed ticket assignmentsis assumed. These restrictionswill be relaxed
in subsequent sections to permit more dynamic behavior. The stride scheduling state for each
client must be initialized via client_init() before any allocations are performed by allocate().
To accurately represent stride as the reciprocal of tickets, a floating-point representation could
be used. A more efficient alternativeis presented that uses a high-precision fixed-point integer
representation. Thisis easily implemented by multiplying the inverted ticket value by alarge
integer constant. This constant will be referred to as stride,, since it represents the stride
corresponding to the minimum ticket allocation of one.?

The cost of performing an allocation depends on the data structure used to implement the
client queue. A priority queue can be used to implement queue_remove_min() and other queue
operationsin O(lg n.) timeor better, wheren, isthe number of clients[CLR90, Tho95]. A skip
list could aso provide expected O(lgn.) time queue operations with low constant overhead
[Pug90]. For small n. or heavily skewed ticket distributions, asimple sorted list islikely to be
most efficient in practice.

Figure 3-12 illustrates an example of stride scheduling. Three clients, A, B, and C, are
competing for a time-shared resource with a 3:2: 1 ticket ratio. For smplicity, a convenient
stride, = 6 is used instead of a large number, yielding respective strides of 2, 3, and 6. The
pass value of each client is plotted as afunction of time. For each quantum, the client with the
minimum pass value is selected, and its pass is advanced by its stride. Ties are broken using
the arbitrary but consistent client ordering A, B, C. The sequence of allocations produced by
stride scheduling in Figure 3-12 exhibits precise periodic behavior: A, B, A, A, B, C.

3.3.2 Dynamic Operations

The basic stride scheduling agorithm presented in Figure 3-11 does not support dynamic
changes in the number of clients competing for a resource. When clients are allowed to join
and leave at any time, their state must be appropriately modified. Figure 3-13 extendsthe basic
algorithm to efficiently handle dynamic changes to the set of active clients. The code listed in
Figure 3-13 also supports nonuniform quanta; thisissue will be discussed in Section 3.3.3.

3Section 5.2.1 discusses the representation of strides in more detail.
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Figure 3-12: Stride Scheduling Example. Clients A (triangles), B (circles), and C (squares) have
a3:2:1ticket ratio. In this example, stride, = 6, yielding respective strides of 2, 3, and 6. For each
quantum, the client with the minimum pass value is selected, and its passis advanced by its stride.

A key extension is the addition of global variables that maintain aggregate information
about the set of active clients. The global _tickets variable contains the total ticket sum for all
active clients. The global_pass variable maintains the “current” pass for the scheduler. The
global_pass advances at the rate of global_stride per quantum, where global _stride = stride; /
global_tickets. Conceptually, the global pass continuously advances at a smooth rate. Thisis
implemented by invoking the global_pass update() routine whenever the global_pass value is
needed.*

A statevariableisalso associated with each client to store the remaining portion of itsstride
when a dynamic change occurs. The remain field represents the number of passes that are left
before a client’s next selection. When a client leaves the system, remain is computed as the
difference between the client’s pass and the global_pass. When a client rejoins the system, its
passvalueis recomputed by adding its remain value to the global _pass.

This mechanism handles situations involving either positive or negative error between the
specified and actual number of alocations. If remain < stride, then the client is effectively
given credit when it rgjoins for having previously waited for part of its stride without receiving

“Due to the use of a fixed-point integer representation for strides, small quantization errors may accumulate
slowly, causing global_passto drift away from client pass values over along period of time. Thisisunlikely to be
apractica problem, since client pass values are recomputed using global _pass each time they leave and rejoin the
system. However, this problem can be avoided by infrequently resetting global_pass to the minimum pass value
for the set of active clients.
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/* per-client state */
typedef struct {

int tickets, stride, pass, remain;
} *client.t;

/* quantum in real time units (e.g. 1M cycles) */
const int quantum = (1 << 20);

/* large integer stride constant (e.g. IM) */
const int stridel = (1 << 20);

/* current resource owner */
clientt current;

/* queue of clients competing for resource */
queue_t queue;

/* global aggregatetickets, stride, pass */
i nt global_tickets, global_stride, global_pass;

/* update global pass based on elapsed real time */
voi d global_pass.update( voi d)
{

static int |ast_update = 0;

int el apsed,;

/* compute elapsed time, advance last_update */
el apsed = time() - |ast_update;
| ast .update += el apsed;

/* advance global pass by quantum-adjusted stride */

gl obal pass +=
(gl obal stride * elapsed) / quantum
}

/* update global tickets and stride to reflect change */

voi d global_tickets.update(int delta)

gl obal tickets += delta;

gl obal stride = stridel / global tickets;

Figure 3-13: Dynamic Stride Scheduling Algorithm. ANSI C code for stride scheduling
operations, including support for joining, leaving, and nonuniform quanta. Queue manipulations can be

/* initialize client with specified allocation */
voi d client_init(clientt ¢, int tickets)

{

c->tickets = tickets;
c->stride = stridel / tickets;
c->remain = c->stride;

}

/* join competition for resource */
voi d clientjoin(clientt c)
{
/* compute pass for next allocation */
gl obal pass_update();
c->pass = gl obal _pass + c->remain;

/* stride is inverse of tickets, whole stride remains */

/* add to queue */
gl obal tickets.update(c->tickets);
queue. nsert(queue, c);

}

/* leave competition for resource */
voi d client_leave(client t c)
{
/* compute remainder of current stride */
gl obal pass_update();
c->remain = c->pass - gl obal _pass;

/* remove from queue */
gl obal tickets._update(-c->tickets);
queue.renove( queue, C);

}

/* proportional-share resource allocation */
voi d allocate()

{

int elapsed,;

/* select client with minimum pass value */
current = queuerenove.m n(queue);

/* use resource, measuring elapsed real time */
el apsed = useresource(current);

/* compute next pass using quantum-adjusted stride */

current->pass +=

(current->stride * el apsed) / quantum

queue.i nsert(queue, current);

performed in O(lg n.) time by using an appropriate data structure.
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Figure 3-14: Stride Scheduling Allocation Change. Modifying a client’s allocation from tickets
to tickets requires only aconstant-time recomputation of its strideand pass. The new stride isinversely
proportional to tickets'. The new pass is determined by scaling remain, the remaining portion of thethe
current stride, by stride | stride.

aquantum. If remain> stride, thenthe client is effectively penalized when it rejoinsfor having
previously received a quantum without waiting for its entire stride.® This approach implicitly
assumes that a partial quantum now is equivalent to a partial quantum later. In genera, this
is a reasonable assumption, and resembles the treatment of nonuniform quanta that will be
presented in Section 3.3.3. However, it may not be appropriate if the total number of tickets
competing for a resource varies significantly between the time that a client leaves and rejoins
the system.

The time complexity for both the client_leave() and client_join() operationsis O(lgn.),
where n. isthe number of clients. These operations are efficient because the stride scheduling
state associated with distinct clientsis completely independent; a change to one client does not
require updates to any other clients. The O(lgn.) cost results from the need to perform queue
manipulations.

Additional support is needed to dynamically modify client ticket allocations. Figure 3-14
illustrates a dynamic alocation change, and Figure 3-15 lists ANSI C code for dynamically
changing a client’s ticket allocation. When a client’s allocation is dynamically changed from
ticketsto tickets, its stride and pass values must be recomputed. The new stride is computed
as usual, inversely proportional to tickets. To compute the new pass, the remaining portion
of the client’s current stride, denoted by remain, is adjusted to reflect the new stride/. Thisis
accomplished by scaling remain by stride / stride. In Figure 3-14, the client’sticket allocation

5Several interesting alternatives could also be implemented. For example, a client could be given credit for
some or al of the passes that elapse while it isinactive.
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/* dynamically modify client ticket allocation by deltatickets */
voi d client.modify(clientt c, int delta)
{

int tickets, stride, remin;

bool t active;

/* check if client actively competing for resource */
active = clientds.active(c);

/* leave queue for resource */
if (active)
clientleave(c);

/* compute new tickets, stride */
tickets = c->tickets + delta;
stride = stridel / tickets;

/* scale remaining passes to reflect changein stride */
remain = (c->emin * stride) / c->stride;

/* update client state */
c->tickets = tickets;
c->stride = stride;
c->remain = remin;

/* rgjoin queue for resource */
if (active)
clientjoin(c);

Figure 3-15: Dynamic Ticket Modification: Stride Scheduling. ANSI C code for dynamic
modificationsto client ticket allocations under stride scheduling. The client_modify() operation requires
O(lgn.) to perform appropriate queue manipulations.




is increased, so pass is decreased, compressing the time remaining until the client is next
selected. If its allocation had decreased, then pass would have increased, expanding the time
remaining until the client is next selected.

The client modify() operation requires O(lgn.) time, where n.. is the number of clients.
As with dynamic changes to the number of clients, ticket allocation changes are efficient
because the stride scheduling state associated with distinct clients is completely independent;
the dominant cost is due to queue manipulations.

3.3.3 Nonuniform Quanta

With the basic stride scheduling algorithm presented in Figure 3-11, a client that does not
consume its entire allocated quantum will receive less than its entitled share of a resource.
Similarly, it may be possiblefor aclient’ susageto exceed astandard quantumin somesituations.
For example, under a non-preemptive scheduler, client run lengths can vary considerably.

Fortunately, fractional and variable-sizequantacan easily be accommodated. When aclient
consumes afraction f of itsallocated time quantum, its pass should be advanced by f x stride
instead of stride. If f < 1, thentheclient’s passwill beincreased less, and it will be scheduled
sooner. If f > 1, then the client’s passwill be increased more, and it will be scheduled |ater.
The extended code listed in Figure 3-13 supports nonuniform quanta by effectively computing
f asthe elapsed resource usage time divided by a standard quantum in the same time units.

Another extension would permit clientsto specify the quantum size that they require.® This
could be implemented by associating an additional quantum, field with each client, and scaling
each client’s stride field by quantum,. | quantum. Deviations from aclient’s specified quantum
would still be handled as described above, with f redefined as the elapsed resource usage
divided by the client-specific quantum...

3.4 Hierarchical Stride Scheduling

Stride scheduling guarantees that the relative throughput error for any pair of clients never
exceeds a single quantum. However, depending on the distribution of ticketsto clients, alarge
O(n.) absolute throughput error is still possible, where n.. is the number of clients.

For example, consider aset of 101 clientswithal00: 1:... : 1ticketalocation. A schedule
that minimizes absol ute error and response time variability would alternate the 100-ticket client
with each of the single-ticket clients. However, the standard stride algorithm schedules the

6Yet another aternative would be to allow each client to specify its scheduling period. Since aclient’s period
and quantum are related by its relative resource share, specifying one quantity yields the other.
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clientsin order, with the 100-ticket client receiving 100 quanta before any other client receives
asingle quantum. Thus, after 100 allocations, the intended allocation for the 100-ticket client
is 50, while its actual allocation is 100, yielding a large absolute error of 50 quanta. Similar
rate-based flow control algorithms designed for networks [DKS90, Zha9l, ZK91, PG93] also
exhibit this undesirable behavior.

This section describes a novel hierarchical variant of stride scheduling that limits the
absolutethroughput error of any clientto O(lg n.) quanta. For the 101-client exampledescribed
above, hierarchical stride scheduler simulations produced amaximum absoluteerror of only 4.5.
The hierarchical algorithm also significantly reduces response time variability by aggregating
clientsto improve interleaving. Since it is common for systems to consist of a small number
of high-throughput clientstogether with alarge number of low-throughput clients, hierarchical
stride scheduling represents a practical improvement over previous work.

3.4.1 BasicAlgorithm

Hierarchical stride scheduling is essentially a recursive application of the basic stride
scheduling algorithm. Individual clients are combined into groups with larger aggregate ticket
alocations, and correspondingly smaller strides. An alocation is performed by invoking the
normal stride scheduling algorithm first among groups, and then among individual clients
within groups.

Although many different groupings are possible, abalanced binary tree of groupsis consid-
ered. Each leaf node represents an individual client. Each internal node represents the group
of clients(leaf nodes) that it covers, and containstheir aggregateticket, stride, and pass values.
Thus, for an internal node, ticketsisthe total ticket sum for all of the clientsthat it covers, and
stride= stride, / tickets. The passvaluefor aninternal nodeis updated whenever the pass value
for any of the clientsthat it coversis modified.

Figure 3-16 presents ANSI C code for the basic hierarchical stride scheduling algorithm.
This code also supports nonuniform quanta, which will be discussed in Section 3.4.3. Each
node has the normal tickets, stride, and pass scheduling state, as well as the usua tree links
to its parent, left child, and right child. An allocation is performed by tracing a path from
the root of the tree to a leaf, choosing the child with the smaller pass value at each level via
node_choose_child(). Once the selected client has finished using the resource, its pass valueis
updated to reflect its usage. The client update is identical to that used in the dynamic stride
algorithm that supports nonuniform quanta, listed in Figure 3-13. However, the hierarchical
scheduler requiresadditional updatesto each of the client’sancestors, following the leaf-to-root
path formed by successive parent links.
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/* binary tree node */
typedef struct node {

struct node *left, *right, *parent;
int tickets, stride, pass;
} *node.t;

/* quantum in real time units (e.g. IM cycles) */
const int quantum = (1 << 20);

/* large integer stride constant (e.g. 1M) */
const int stridel = (1 << 20);

/* current resource owner */
node_t current;

/* tree of clients competing for resource */
node_t root;

/* select child of internal node to follow */
nodet node_choose_child( nodet n)
{
/* no choiceif only one child */
if (n->left == NULL)
return(n->right);
if (n->right == NULL)
return(n->left);

/* choose child with smaller pass */

if (n->left->pass < n->right->pass)
return(n->left);

el se
return(n->right);

/* proportional-share resource allocation */
voi d allocate()

{

int el apsed,;
nodet n;

/* traverse root-to-leaf path following min pass */
for (n =root; !'nodedsleaf(n); )
n = node_choose_child(n);

/* use resource, measuring elapsed real time */
current = n;
el apsed = use_resource(current);

/* update pass for each ancestor using its stride */
for (n =current; n!= NULL; n = n->parent)
n->pass +=
(n->stride * elapsed) / quantum

Figure 3-16: Hierarchical Stride Scheduling Algorithm. ANSI C code for hierarchica stride
scheduling with a static set of clients, including support for nonuniform quanta. The main data structure
is a binary tree of nodes. Each node represents either a client (leaf) or a group (internal node) that
summarizes aggregate information.
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/* dynamically modify node allocation by deltatickets */
voi d node_modify(nodet n, int delta)

{

int oldstride, remain;

/* compute new tickets, stride */
oldstride = n->stride;
n->tickets += delta;

n->stride = stridel / n->tickets;

/* done when reach root */
if (n==root)
return;

/* simply scale stored remain value if inactive */
if (!nodeds.active(n))
{
n->remain = (n->remain * n->stride) / oldstride;
return;

}

/* scale remaining passes to reflect changein stride */
remain = n->pass - root->pass;

remain = (remain * n->stride) / oldstride;
n->pass = root->pass + renain;

/* propagate change to ancestors */
node_nodi fy(n- >parent, delta);

Figure 3-17: Dynamic Ticket Modification: Hierarchical Stride Scheduling. ANSI C code
for dynamic modificationsto client ticket all ocationsunder hierarchical stridescheduling. A modification
requires O(lgn.) time to propagate changes.

Each client allocation can be viewed as a series of pairwise allocations among groups of
clientsat each level inthetree. The maximum error for each pairwise allocationis 1, and in the
worst case, error can accumulate at each level. Thus, the maximum absolute error for a series
of tree-based allocations is the height of the tree, which is [1g n. |, where n. is the number of
clients. Sincetheerror for apairwise A : B ratioisminimized when A = B, absolute error can
be further reduced by carefully choosing client leaf positions to better balance the tree based
on the number of tickets at each node.

3.4.2 Dynamic Operations

Extending the basic hierarchical stride algorithm to support dynamic modificationsrequires
a careful consideration of the impact that changes have at each level in the tree. Figure 3-17
lists ANSI C code for performing aticket modification that works for both clients and internal
nodes. Changesto client ticket allocations essentially follow the same scaling and update rules
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used for normal stride scheduling, listed in Figure 3-15. The hierarchical scheduler requires
additional updates to each of the client’s ancestors, following the leaf-to-root path formed by
successive parent links. Notethat the passvalue of the root node used in Figure 3-17 effectively
takes the place of the global_pass variable used in Figure 3-15; both represent the aggregate
global scheduler pass.”

Operations that allow clients to dynamically join or leave the system must also account
for the effects of changes at each level in the tree. Under hierarchical stride scheduling, the
state of each node that covers a client is partially based on that client’s state. By the time
that a client dynamically leaves the system, it may have accumulated O(lg n..) absolute error.
Without adjustments to compensate for this error, a client that leaves after receiving too few
guanta unfairly increases the allocation granted to other clientsin the same subtree. Similarly,
aclient that leaves after receiving too many quanta unfairly decreases the allocation granted to
other clientsin the same subtree.

A genera “undo” and “redo” strategy isused to avoid these problems. Any biasintroduced
by a client on its ancestors is eliminated when it leaves the system. When the client rejoins
the system, symmetric adjustments are made to reconstruct the appropriate bias in order to
correctly influence future scheduling decisions.

Figure3-181listsANSI C codethat implements support for dynamic client participation. As
with ordinary stride scheduling, an additional remain field isassociated with each client to store
the remaining portion of its stride when it leavesthe system. If remain < stride, then the client
should be credited for quantathat it was entitled to receive. If remain > stride, then the client
should be penalized when it rgjoins the system for having previously received quanta ahead
of schedule. As mentioned earlier in the context of dynamic stride scheduling, this approach
makes the implicit assumption that a quantum now is equivalent to a quantum later.

When a client leaves the system, remain is computed as the difference between its pass
and the global pass, represented by the pass value of the root node. When the client rejoins
the system, this remain value is used to recompute the client’s pass value. For ordinary stride
scheduling, no other special actions are required, because the scheduling state associated with
distinct clientsis completely independent. However, under hierarchical stride scheduling, the
state of each node that covers a client is partially based on that client’s state. When a client
leaves the system via client_leave(), any residual impact on its ancestors must be eliminated.
Thisisimplemented by performing a*“ pseudo-allocation” to erase the effects of client error by
updating the client’sancestors asif an actual corrective allocation had been given to the client.

"Changes that do not occur on exact quantum boundaries should first update the root pass value based on
the elapsed redl time since its last update. This update would resemble the operation of global_pass_update() for
ordinary stride scheduling, listed in Figure 3-13.
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/* binary tree node */
typedef struct node {

struct node *left, *right, *parent;
int tickets, stride, pass, remain;
} *nodet;

/* standard quantum in real time units (e.g. 1M cycles) */
const int quantum = (1 << 20);

/* compute entitled resource time for client */
i nt client_entitled( node_t c)

{

int conpleted, entitled,;

/* compute completed passes */
conpleted = c->stride - c->remain;

/* convert completed passes into entitled time */
entitled =

(conpleted * quantun) / c->stride;
return(entitled);

}

/* pretend that elapsed time units were allocated to node */
voi d pseudo_allocate( nodet node, int el apsed)

{

nodet n;

/* update node, propagate changes to ancestors */
for (n = node; n!=root; n = n->parent)
n->pass +=
(n->stride * elapsed) / quantum

Figure 3-18: Dynamic Client Participation: Hierarchical Stride Scheduling. ANSI C code
to support dynamic client participation under hierarchical stride scheduling. The client_join() and

/* join competition for resource */
voi d client_join(nodet c)
{
/* add nodeto tree */
treednsert(root, c)

/* perform update to reflect ticket gain */
node_nodi fy(c->parent, c->tickets);

/* “‘redo” any existing client error */
pseudo_al | ocat e(c->parent,
- cliententitled(c));

/* compute pass for next allocation */
C->pass = root->pass + c->renain;

}

/* leave competition for resource */

voi d client_leave( node_t c)

{
/* compute passes remaining */
c->remain = c->pass - root->pass;

/* “‘undo” any existing client error */
pseudo.al | ocat e( c- >parent,
cliententitled(c));

/* perform update to reflect ticket loss */
node_nodi fy(c->parent, - c->tickets);

/* remove client from tree */
treerenove(root, c);

client_leave() operations require O(lg n..) time to propagate updates.
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This pseudo-allocation is intended to correct any outstanding client error, so the quantum
size used for the pseudo-all ocation must equal the amount of resourcetimetheclient isactually
entitled to receive. This value is determined by client_entitled(), which returns a resource
entitlement measured in the same real time units as quantum. A client’s entitlement is based
on the number of passes remaining beforeit is due to be selected. If the client’s entitlement is
positive, then it is currently owed time by the system; if it is negative, then the client owestime
to the system.

After the pseudo-allocation correctsfor any existing client error, node_modify() isinvoked
to ensure that future updates reflect the overall decrease in tickets due to the client leaving
the system. As with any ticket modification, this change propagates to each of the client’s
ancestors. Finally, acall to tree_remove() deactivatesthe client by removing it from the tree.

When a client rejoins the system via client_join(), the inverse operations are performed.
First, tree_insert() activatesthe client by adding it to the tree. Next, node_modify() isinvoked
to reflect the overall increase in tickets due to the client joining the system. Finally, theclient’s
new ancestors are updated to reflect its net entitlement by invoking pseudo_allocate(). Note
that theimplementation of client_join() iscompletely symmetricto client_leave(). Asexpected,
successive client_leave() and client_join() operationsto the same client leaf position effectively
undo one another.

3.4.3 Nonuniform Quanta

Fractional and variable-size quanta are handled in a manner that is nearly identical to their
treatment under ordinary stride scheduling. The basic hierarchical stride algorithm listed in
Figure 3-16 includes support for nonuniform quanta. When a client uses a fraction f of its
allocated quantum, its passis advanced by f x strideinstead of stride. The same scaling factor
f 1sused when advancing the pass val ues associated with each of the client’s ancestors during
an allocation.

3.4.4 Huffman Trees

As noted in Section 3.4.1, many different hierarchical groupings of clients are possible. A
height-balanced binary tree permits efficient O(lg n..) scheduling operationswhile achieving a
[1g n.| bound on absolute error. Aninteresting alternativeisto construct atree with Huffman’s
algorithm[Huf52, CLR90], using client ticket values as frequency counts.® Huffman encoding
istypically used to find optimal variable-length codes for compressing files or messages.

8 Thanks to Bill Dally for suggesting this approach.
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In the context of hierarchical stride scheduling, a Huffman tree explicitly minimizes the
cost of performing an allocation. The same basic allocation operation presented in Figure 3-16
can aso be used with Huffman trees. In a Huffman tree, clients with high ticket values are
located near the root of the tree, while clients with low ticket values end up farther down in
the tree structure. Thus, clients that receive the most allocations require very short root-to-leaf
traversals, and clients that receive all ocations infrequently have longer root-to-leaf paths.

The Huffman tree structure also ensures that worst-case absolute error is smallest for the
clients with the largest ticket values, since maximum absolute error is directly related to the
depth of the client in the tree. In Section 4.1.4, it will be demonstrated that response-time
variability also increases with tree depth, so a Huffman tree also minimizes response-time
variability for large clients. However, O(n.) absolute error is still possible for small clients,
since the height of the tree may be O(n.) for highly skewed ticket distributions. Allocationsto
small clients may also exhibit high response-time variability for the same reason.

While aheight-balancedtree provides uniform performance bounds and identical allocation
costs for all clients, a Huffman tree provides better guarantees and lower allocation costs for
clientswith larger ticket values, at the expense of clientswith smaller ticket values. A detailed
analysis of the precise effects of various hierarchical structures is an interesting topic for
future research. In addition to bounds on worst-case behavior, more work is needed to better
understand the average-case behavior associated with both height-balanced binary trees and
Huffman trees.

Huffman trees appear to be a good choice for static environments, since the tree structure
remains fixed. However, dynamic operations that modify client ticket values or the set of
active clients present some challenging problems. Although the dynamic operations listed in
Figures 3-17 and 3-18 will correctly implement proportional sharing with Huffman trees, they
do not maintain the invariants that characterize Huffman trees. For example, if aclient’sticket
allocation is changed from avery small to avery large value, numerous node interchanges and
updates are necessary to move the client to a higher location in the tree.

Dynamic Huffman codes have been studied in the context of adaptive compression schemes
for communication channels[Vit87]. Similar techniques may be useful for dynamic manipula-
tionsof Huffman treesfor hierarchical stride scheduling. However, these techniquescommonly
assume that the values of character frequencies (client ticket values in the case of scheduling)
change only incrementally as messages are processed dynamically. Of course, thereisno com-
pelling reason that the tree structure used for hierarchical stride scheduling must alwaysremain
adtrict Huffman tree. Relaxing this constraint may yield algorithms that provide near-optimal
allocation costs with acceptable overhead for dynamic operations.
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3.5 Framework I mplementation

This section explains how the various proportional-share mechanisms presented in this chapter
can be used to implement the general resource management framework described in Chapter 2.
Implementationsof ticket transfers, ticket inflation, and ticket currenciesare presentedin terms
of low-level dynamic operationsthat have already been defined, such as client_modify(). Since
primitive dynamic operations have been described for lottery scheduling, multi-winner lottery
scheduling, stride scheduling, and hierarchical stride scheduling, any of these mechanisms can
be used as a substrate for the general framework.

351 Tickets

A ticket is a first-class object that abstractly encapsulates relative resource rights. In the
descriptions of the basic mechanisms, all of the tickets associated with a client are compactly
represented by asingle integer. A complete resource management framework implementation
islikely to useamoreflexiblerepresentation, in which ticketsare protected system-level objects
that can beexplicitly created, destroyed, and transferred between clientsand currencies. Despite
the use of a more sophisticated ticket representation, the resource rights currently specified by
a set of tickets can always be converted into a single integer value, expressed in base units.
However, the frequency of such conversions may differ between implementations.

352 Ticket Transfers

A ticket transfer is an explicit transfer of tickets from one client to another. A transfer of ¢
ticketsfrom client A to client B essentially consistsof two dynamic ticket modifications. These
modifications can be implemented by invoking client_modify(A, —t) and client_modify(B, t).

For lottery scheduling, the client_modify() operations simply change the underlying ticket
allocations associated with clients A and B, and update appropriate ticket sums. Under multi-
winner lottery scheduling, aticket transfer also terminates the current superquantum. When
A transfers ticketsto B under stride scheduling, A’s stride and pass will increase, while B’s
stride and pass will decrease. A dight complication arises for complete ticket transfers; i.e.,
when A transfersitsentireticket allocationto B. Inthiscase, A’sadjusted ticket valueis zero,
leading to an adjusted stride of infinity (division by zero). This problem can be circumvented
by treating a complete transfer from A to B as an update of client B via client_modify(B,
A.tickets), and a suspension of client A via client_leave(A). This effectively stores A’s remain
value at the time of the transfer, and defers the computation of its strideand passvaluesuntil it
once again receives anon-zero ticket allocation. The same technique can be used to implement
ticket transfersfor hierarchical stride scheduling.
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3.5.3 Ticket Inflation and Deflation

Ticket inflation and ticket deflation are alternativesto explicit ticket transfers that alter resource
rights by manipulating the overall supply of tickets. Aninstanceof inflation or deflation simply
requires asingle dynamic modificationto aclient. If ¢ new ticketsare created for client A, then
the resulting inflation is implemented via client_modify(A, t). Similarly, if ¢ of A’s existing
tickets are destroyed, the resulting deflation is implemented via client_modify(A, —t).

For lottery scheduling, inflation and deflation simply changethe underlying ticket all ocation
associated with aclient. In the case of multi-winner |otteries, ticket inflation and deflation also
terminate the current superquantum. For stride scheduling, ticket inflation causes a client’s
stride and pass to decrease; deflation causes its stride and pass to increase. The effect is the
same under hierarchical stride scheduling; similar updates are also applied to each internal
node that coversthe client.

354 Ticket Currencies

A ticket currency defines a resource management abstraction barrier that contains the effects
of ticket inflation in amodular way. Tickets are denominated in currencies, allowing resource
rights to be expressed in units that are local to each logical module. The effects of inflation
arelocally contained by effectively maintaining an exchange rate between each local currency
and a common base currency that is conserved. There are several different implementation
strategiesfor currencies.

One eager implementation strategy is to alwaysimmediately convert ticket val ues denomi-
nated in arbitrary currenciesinto units of the common base currency. Any changesto the value
of a currency would then require dynamic modifications, via client_modify(), to all clients
holding tickets denominated in that currency, or one derived from it. An important exception
is that changes to the number of tickets in the base currency do not require any modifications
to client state. This is because al client scheduling state is computed from ticket values ex-
pressed in base units, and the state associated with distinct clients is independent. Thus, the
scope of any changesin currency valuesis limited to exactly those clients which are affected.
Since currencies are used to group and isolate logical sets of clients, the impact of currency
fluctuationswill typically be very localized.

Analternativelazy implementation strategy defersthe computation of ticket valuesuntil they
are actually needed. For example, consider a list-based lottery scheduler that is implemented
for a system with a fixed number of base tickets. Since only a portion of the ticket space is
traversed during an alocation, only those clientsthat are actually examined need to have their
tickets converted into base units. A lazy implementation exploits this fact to defer computing
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the effectsof dynamic changesthat result from ticket transfers and inflation®. The efficiency of
such an approach depends on the rel ative frequencies of dynamic operationsand allocations, as
well asthe distribution of ticketsto clients. Lazy implementations may aso benefit by caching
ticket and currency valuesto accel erate conversions.

Various optimizationsare also possible. For example, in some systemsit may be acceptable
to temporarily delay the effect of dynamic changes. If delays are large compared to the
average allocation granularity, then performance may be improved by batching changes, such
as modifications to currency values. A related optimization is to maintain exchange rates that
areonly approximately correct and loosely consistent. For example, updatesto currency values
could be deferred until significant changes accumulate. System-enforced limits could even
be placed on the allowed rate of inflation and deflation, avoiding large, rapid fluctuations in
currency values. Such optimizations would be particularly useful for distributed scheduler
implementations, since communication would be relatively expensive.

9Many scheduling operations depend upon accurate maintenance of the total number of active base tickets.
Inflation or deflation of the base currency would require immediate work to reflect changesin the overall number
of base tickets.
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Chapter 4
Per for mance Results

This chapter presentsresults that quantify the performance of |ottery scheduling, multi-winner
lottery scheduling, stride scheduling, and hierarchical stride scheduling. Basic analytical results
areinitially introduced to serve as a guide to the behavior of the core scheduling algorithms.
Quantitative results obtained from simulation experiments are then presented to further eval-
uate the scheduling mechanisms in both static and dynamic environments. Many graphical
presentations of simulation data are included to facilitate detailed comparisons between the
various mechanisms.

4.1 Basic Analysis

In general, there are n. clients competing for aresource, and each client ¢; hast; tickets, for a
total of T' = Y7, ¢, tickets. Asdescribedin Chapter 3, the throughput accuracy for each client
is quantified by measuring the difference between its specified allocation and the allocation
that it actually receives. After n, consecutive allocations, the specified allocation for client c;
isn,t;/T. A client'sabsolute error is defined as the absol ute value of the difference between
its specified and actual number of allocations. The pairwise relative error between clients
¢; and c; is defined as the absolute error for the subsystem containing only ¢; and c;, where
T =t; + t;, and n, isthetotal number of allocations received by both clients.

The response time for each client is measured as the elapsed time from its completion of
one quantum, up to and including its completion of another. The response-time variability
associated with a client is quantified by the spread of its response-time distribution. The range
of this spread is given by its minimum and maximum response times. The response-time
distribution can also be characterized by its mean, x4, and its standard deviation, o. Another
useful metric that normalizes variability is the dimensionless coefficient of variation, o /1.
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The rest of this section presents some basic analytical resultsfor lottery scheduling, multi-
winner lottery scheduling, stride scheduling, and hierarchical scheduling. Each mechanismis
analyzed in terms of both throughput accuracy and response-time variability.

4.1.1 Lottery Scheduling

Lottery scheduling is a randomized agorithm, and can be easily analyzed using well-known
results from probability and statistics [Tri82]. The number of lotteries won by a client has
a binomial distribution. The probability that client ¢; will win a particular lottery is ssmply
pi = t;/T. After n, identical alocations, the expected number of wins w; for client ¢; is
E[w;] = n, p;, with variance ‘71202- = nap;(1 — p;). Thus, the expected throughput error for a
clientisO(y/n,). Sinceerror increasesslowly with n,, throughput accuracy steadily improves
when error ismeasured as a percentage of n,,. Nevertheless, the absolute value of the error can
still grow without bound.

The response time for a client has a geometric distribution. The expected number of
lotteries!; that client ¢; must wait before completingitsfirst winis E[l;] = 1/p;, with variance
o = (1 —p;)/p;. The coefficient of variationis o,/ E[l;] = \/1 — p;. Thus, the response-
time variability for client ¢; depends only on its relative share of tickets, p; = t;/T. When
p; is large, the coefficient of variation is small, as desired. However, when p; is small, the
coefficient of variation approaches one, indicating that response-time variability is extremely
high for low-throughput clients.

4.1.2 Multi-Winner Lottery Scheduling

Multi-winner lottery scheduling is a hybrid scheme with both randomized and deterministic
components. A multi-winner lottery selectsn.,, winners per lottery; the n,, consecutive quanta
allocated by alottery arereferred to asasuperquantum. A multi-winner lottery with n.,, winners
can be analyzed as n,,, separate lotteries, each of which independently selects a winner from
an equal-size region of the ticket space that contains 7'/n,, tickets. Thus, al of the results
presented for lottery scheduling can also be applied to each winner in a multi-winner |ottery.
The key feature of amulti-winner lottery isitsability to provide some deterministic guaran-
tees, depending on both the distribution of ticketsto clientsand the value of n,,,. Deterministic
guarantees are based on the observation that if there is only a single client in a particular
region, then that client will win the region’s lottery with probability 1. Thus, each client c;
is deterministically guaranteed of receiving at least |n,, %] quanta per superquantum. The
throughput accuracy and response-time variability for client ¢; depend on the fraction of its
allocationsthat is performed deterministically. Let d; = |n,, %J denote the number of quanta
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that are deterministically allocated to client ¢; per superquantum. Let s; = % — d; denote the
fractional number of quantathat are stochastically allocated to client ¢; per superquantum.

If s; = 0, the multi-winner lottery always all ocates the precise number of quanta specified
for client ¢; during each superquantum, and thereis no random error. In this case, the absolute
error for client c; equalszero at some point during every superquantum. Theerror at other points
within asuperquantum depends on theintra-superquantum schedul e used to order winners. The
worst-case response time for client ¢; is bounded by 2(n.,, — d;) + 1 quanta. This maximum
will occur when all d; quantaare allocated consecutively at the start of one superquantum, and
then all d; quanta are allocated consecutively at the end of the next superquantum.

If s; > 0, then the throughput error for client ¢; will aso have arandom component. This
component has exactly the same properties described for ordinary lottery scheduling, where
p; = s;, and n, is replaced by the number of consecutive superquanta. If d; > 0, then the
maximum response time for client ¢; is still bounded by 2(n,, — d;) + 1 quanta. Otherwise,
the response time has the same geometric distribution as for lottery scheduling, with p; = s;,
and n, equal to the number of consecutive superquanta.

4.1.3 Stride Scheduling

Stride scheduling provides a strong deterministic guarantee that the absolute error for any pair
of clients never exceeds one quantum. This guarantee results from the observation that the
only source of pairwise error is due to quantization. A derivation of this bound is relatively
straightforward. Let ¢; and ¢, denote two clients competing for aresource with at; : ¢, ticket
ratio. Let s; = 1/t; denote the stride for ¢;, and p; denote the pass value for ¢;. Similarly,
let s, and p, denote the stride and pass values for ¢,. The initial pass values are p; = sq,
and p, = s,. For each alocation, the client ¢; with the minimum pass value p; is selected; if
p1 = p2, then either client may be selected. The pass value p; for the selected client is then
advanced by s;. Since p; isonly advanced by s; when p; < p,, and ps is only advanced by s,
when p, < p;, the maximum possible difference between p; and p,, at any timeismax(sy, $2).

The schedule produced by stride scheduling will consist of alternating sequences of allo-
cationsto clientsc; and c,. Without loss of generality, assumethat £, > ¢,. The absolute error
for client ¢, will be greatest immediately following the longest possible sequence of allocations
to client ¢;. (Because there are only two clients, their absolute error values are identical, so
thisis also the maximum error for client ¢;.) The maximum number of consecutive allocations
toclientc; is[ 2] = [31]. For thisinterval, the specified allocation for client ¢, is ;%[ 1£].
Because the actual allocation to client ¢, over this interval is zero, its absolute error over
the interval is equal to its specified allocation. Since [{] < %2, it follows directly that
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the maximum absolute error for ¢, is bounded by htﬁ% = 1. Therefore, the maximum
throughput error for any pair of clients is bounded by a single quantum. Similarly, for any
pair of clients, the largest difference between the minimum and maximum response times for
the same client is also bounded by one quantum. Thus, for a pair of clients, response-time
distributions will be extremely tight.

Unfortunately, throughput error and response-time variability can be much larger when
more than two clients are scheduled. Skewed ticket distributions can result in O(n.) absolute
error, wheren. isthe number of clients. For example, consider avery uneven ticket distribution
inwhich n. — 1 “small” clients each have a single ticket, and one “large” client hasn, — 1
tickets. The stride scheduling algorithm will schedule the large client first, and will allocate
n. — 1 quantato it before any other client is scheduled. Since the specified allocation for the
large client is only half that amount, its absolute error is O(n.). Response-time variability
is also extremely high for such distributions, since there is no interleaving of the many small
clientswith the single large client.

4.1.4 Hierarchical Stride Scheduling

Hierarchical stride scheduling providesatighter O(lgn.) bound on absolute error, eliminating
the worst-case O(n..) behavior that is possible under ordinary stride scheduling. Hierarchical
stride scheduling can be analyzed as a series of pairwise all ocationsamong successively smaller
groupsof clientsat each level inthe hierarchy. Theerror for each pairwiseallocationisbounded
by one quantum, and in the worst case, error can accumulate at each level. Thus, the maximum
absolute error for aseries of alocationsisthe height of thetree, whichis [1g .| for abalanced
binary tree.

The response-time characteristics of hierarchical stride scheduling are more difficult to
analyze. For highly skewed ticket distributions, response-time variability can be dramatically
lower than under ordinary stride scheduling. However, for other distributions, response-time
variability can be significantly higher. The explanation for this behavior is that response-time
variability can potentially increase multiplicatively at successive levels of the hierarchy.

Consider thefirst level of the tree-based data structure used for hierarchical stride schedul-
ing. Thislevel consists of the two children of the root node, NV; and /NV,., each representing an
aggregate group of clients. One of these two nodes is selected during every hierarchical allo-
cation. The response-time distribution for each of these nodes will be tight, with a maximum
difference of one quantum between its minimum and maximum values. For example, suppose
that the range for the right node NV, is[3, 4]. Now consider the two children of this node, V,,
and N,... If al other nodes in the hierarchy are ignored, the response-time distributions for
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this isolated pair of nodes are also very tight; suppose that the range for the left node N,; is
[2, 3]. However, since node [V, is only selected every second or third time that its parent V.,
is selected, its overall response-time range expandsto [2 x 3, 3 x 4] =[6, 12].

In general, the minimum (maximum) response time for a client can be as low (high) as
the product of the minimum (maximum) response times computed in isolation for each of
its ancestors. However, the actual spread may not be this large for some distributions. For
example, the periodic behavior of achild may coincidewith the periodic behavior of itsparent if
their periods divide evenly. Nevertheless, multiplicative increases in response-time variability
are still possible for many distributions of ticketsto clients.

4.2 Simulation Results

This section presents the results of quantitative experiments designed to eval uate the effective-
ness of the various proportional-share mechanisms described in Chapter 3. The behavior of
each mechanism is examined in both static and dynamic environments. As predicted by the
basic analytical results, when compared to the randomized |ottery-based mechanisms, the de-
terministic stride-based approaches generally provide significantly better throughput accuracy,
with significantly lower response-time variability.

For example, Figure 4-1 presentsthe results of scheduling threeclientswitha3:2: 1 ticket
ratio for 100 allocations. The dashed lines represent the ideal allocationsfor each client. Itis
clear from Figure 4-1(a) that | ottery scheduling exhibitssignificant variability at thistime scale,
due to the algorithm’s inherent use of randomization. The results for multi-winner lottery
scheduling with n,, = 4, depicted in Figure 4-1(b), demonstrate reduced variability for the
clients with large ticket shares. Figures 4-1(c) and 4-1(d) indicate that deterministic stride
scheduling and hierarchical stride scheduling both produce the same precise periodic behavior:
A, B, A A B, C.

The remainder of this section exploresthe behavior of these four scheduling mechanismsin
more detail, under a variety of conditions. Throughput accuracy and response-time variability
are used as the primary metrics for evaluating performance. Ideally, throughput error and
response-time variability should both be minimized. However, these goals can conflict for
many distributionsof ticketsto clients, resulting in different tradeoffsfor the various scheduling
technigues. For example, hierarchical stride scheduling generally minimizes throughput error,
but may exhibit highly variable response times for some ticket distributions.

Although a large amount of data is presented, a regular structure has been imposed to
facilitate comparisons. Figures that include results for multiple mechanisms generally consist
of four rows of graphs in a fixed top-to-bottom order: lottery scheduling (L), multi-winner
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Figure 4-1: Example Simulation Results. Simulation results for 100 allocations involving three
clients, A, B, and C, with a 3:2:1 allocation. The dashed lines represent ideal proportional-share
behavior. (a) Randomized lottery scheduler. (b) Hybrid multi-winner lottery scheduler with n,,, = 4.
(c) Deterministic stride scheduler. (d) Hierarchical stride scheduler.
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lottery scheduling (M), stride scheduling (S), and hierarchical stride scheduling (H). Graphs
that appear in the same column are generally associated with the same client ticket allocation,
and allocations are arranged in a decreasing left-to-right order. A graph depicting resultsfor a
client with 7" tickets under scheduling algorithm A that appearsin Figure F' will be referred to
asFigure F(A,T).

421 Static Environment

Before considering the effects of dynamic changes, baseline behaviors are examined for a
static environment. A static environment consists of a fixed set of clients, each of which has a
constant ticket allocation. The first set of simulations presented involve only two clients; later
simulations probe the effects of introducing additional clients.

Two Clients

Figures 4-2 and 4-3 plot the absolute error! and response-time distributions that result from
simulating two clients under each scheduling scheme. The data depicted is representative of
simulation results over a wide range of pairwise ratios. The 7: 3 ticket ratio ssimulated in
Figure 4-2 istypical of small ratios, and the 13: 1 alocation simulated in Figure 4-3 is typical
of largeratios.

The graphs that appear in the first column of Figures 4-2 and 4-3 plot the absolute error
observed over a series of 1000 allocations. The error for the randomized lottery scheduling
technique is averaged over 1000 separate runs, in order to quantify its expected behavior. The
error values observed for lottery scheduling are approximately linear in /n,, as demonstrated
by Figures 4-2(L) and 4-3(L). Thus, as expected, |lottery-scheduler error increases slowly with
n,, indicating that accuracy steadily improveswhen error ismeasured as a percentage of n,,. It
may initially seem counterintuitive that the absolute error is considerably smaller for the 13: 1
ratio than for the 7: 3 ratio. The explanation for this effect is that the standard deviation for a
client’sactual allocation count is proportional to +/p(1 — p), where p istheclient’s probability
of winning asingle lottery. For the 13: 1 ratio, thisvalueisroughly 0.26, whileit is about 0.46
for the 7: 3 alocation. Thus, the expected absolute error isindeed smaller for the larger ratio.
However, when measured as a percentage of the number of allocations due to each client, the
error islargest for the single-ticket client under the 13: 1 ratio.

Three separate error curves are presented for each multi-winner lottery scheduling graph,
corresponding to n,, = 2, 4, and 8 winners. Because multi-winner lottery scheduling has a

In this case the relative and absolute errors are identical, since there are only two clients.
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randomized component, each of these error curvesis also an average over 1000 separate runs.
The error curves observed for the multi-winner |otteries have the same general shape as those
for asingle-winner lottery. However, their absolute valueislower, often by alarge amount. For
the 7: 3ratioin Figure 4-2(M), the reductionsin error are about 25%, 50%, and 60% for n.,, =
2, 4, and 8, respectively. For the 13: 1 ratio in Figure 4-3(M), the corresponding reductions are
approximately 3%, 10%, and 30%. Asn,, increases, the deterministic component of the multi-
winner lottery provides successively better approximations to the specified allocations. This
decreasesrandom error, since asmaller fraction of allocationsis determined stochastically. For
the 7 : 3 ratio, the deterministic approximation improves quickly, accounting for the decreasing
marginal improvementsasn,, increases. The larger 13: 1 ratio exhibits the opposite behavior,
sincethe probability that the single-ticket client will be sel ected during a superquantum remains
below 50% until n,, = 8. An even larger reduction in error would result for n,, > 14.

Sincestride scheduling and hierarchical stride scheduling are deterministic techniques, their
absolute error curves are each plotted for a single run. As expected, the error never exceeds
a single quantum, and drops to zero after each complete period — 10 quanta for the 7: 3 ratio,
and 14 quanta for the 13: 1 alocation. This periodic behavior is clearly visible on the small
insets associated with each graph. The resultsfor both stride scheduling and hierarchical stride
scheduling are identical because there are only two clients, and therefore no opportunity for
aggregation under the hierarchical scheme.

The graphs that appear in the second and third columns of Figures 4-2 and 4-3 present
response-time distributions for each client over one million alocations. A logarithmic scaleis
used for the vertical axis since response-time frequenciesvary enormously across the different
scheduling mechanisms.  Under lottery scheduling, client response times have a geometric
distribution, which appears linear on a logarithmic scale. The response-time distributions
for clients with small allocations have a much longer tail than those for clients with larger
alocations. This is because the standard deviation for aclient’sresponsetimeis /(1 — p)/p,
where p isthe client’s probability of winning asinglelottery. Asp approaches1, response-time
variability approaches zero; as p approaches 0, response-time variability becomes infinitely
large. For the 7: 3 ratio shown in Figure 4-2(L), the response-time distribution for the larger
client drops off quickly, with a maximum of 12 quanta, while the maximum response time for
the smaller client is 49 quanta. Similarly, for the 13: 1 ratio in Figure 4-3(L), the maximum
response time for the larger client is 6 quanta, but the maximum for the smaller client is off the
scale at 135 quanta.

The multi-winner |ottery response-time distributions are plotted for n,, = 4. Withthe7:3
ratio depicted in Figure 4-2(M), this technique is extremely effective, reducing the maximum
response time from 49 to 7 quanta for the smaller client. With n,, = 4, the deterministic
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approximation to the 7: 3 ratio is very successful. However, for the 13: 1 ratio presented in
Figure 4-3(M), four winners are insufficient to provide any deterministic guarantees for the
smaller client. In fact, its maximum response time actually increases to 221 quanta, although
its overall distribution tightens slightly. The original single-winner distribution has a standard
deviation of o = 13.50 quanta, which isreduced to o = 12.05 quantawith four winners.

As mentioned earlier, both stride scheduling and hierarchical stride scheduling are iden-
tical when there are only two clients. These deterministic stride-based agorithms exhibit
dramatically less response-time variability than the randomized lottery-based algorithms. As
expected, for both of the pairwise ratios shown in Figures 4-2(S) and 4-3(S), client response
times never varied by more than a single quantum under stride scheduling. The worst-case
o = 13.50 quantafor the 13: 1 ratio under lottery scheduling is completely eliminated under
stride scheduling —all responsetimesfor the small client are exactly 14 quanta. The worst-case
o = 2.79 quantafor the 7: 3 ratio under lottery scheduling is smaller by afactor of five under
stride scheduling, with ¢ = 0.47 quanta.

Several Clients

A wider range of scheduling behavior is possible when more than two clients are considered.
Figure 4-4 plots the absolute error for four clients with a 13:7:3: 1 ticket allocation, and
Figure4-5 graphsthe corresponding response-timedistributionsfor eachclient. The13:7:3:1
ratio was selected to allow direct comparisons with the pairwise 7: 3 and 13: 1 ratios used in
Figures 4-2 and 4-3.

As expected, the client error curves for lottery scheduling shown in Figure 4-4(L) have
the same general shape, linear in \/n,, as the pairwise error curves in Figures 4-2(L) and
4-3(L). In general, lottery scheduling isinsensitive to the number of clients; each client’s error
is determined solely by its own relative ticket share. However, the overall number of tickets
with four clientsis larger than in either of the pairwise cases, so the associated reductionsin
relative ticket shares are reflected in the client error curves. Recall that the standard deviation
for aclient’sactual allocation is proportional to /p(1 — p), where p isthe client’s probability
of winning a single lottery. For the client in Figure 4-4(L,13), this value increases from
approximately 0.26 to 0.50, matching the near factor-of-two increase in the client’s absolute
error. The error for the client in Figure 4-4(L,7) remains roughly unchanged, since its per-
lottery win probability changes from 0.7 to about 0.29 ~ (1 — 0.7). The changesin absolute
error for the smaller clients also mirror the relative changesin the standard deviationsfor their
actual allocations.
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Figure 4-4: Throughput Accuracy, Static 13:7:3:1 Allocation. Simulation results for four
clients with a static 13:7:3: 1 ticket ratio under lottery scheduling, multi-winner lottery scheduling,
stride scheduling, and hierarchical stride scheduling. Each graph plots the absolute error for a single
client over 1000 alocations. A single run was used for each deterministic technique (S, H), and 1000
separate runswere averaged for each randomized technique (L, M). The distinctive black band along the
time axisin the (M,3) graph is actually the error curvefor n,, = 8. This particular multi-winner lottery
configuration produces exact deterministic behavior with very low error.
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As for the pairwise smulation results, three separate error curves are plotted for each
multi-winner |ottery scheduling graph, corresponding to n,, = 2, 4, and 8 winners. In general,
the error curves observed for the multi-winner |otteries have the same shape as the error curves
for the single-winner lottery, with lower absolute values. The largest reductionsin client error
occur when the value of n,, produces an accurate deterministic approximation to the client’s
actual share. For example, the client in Figure 4-4(M,13) has a 13/24 = 54.17% share of
the total number of tickets. With n,, = 2, the client is effectively allocated a 50% share
deterministically, and its remaining 4.17% share by lottery. Increasing n.,, to 4 or 8 provides
littleadditional benefit. Similarly, the largest reductionin error for theclient in Figure 4-4(M,7)
occurswhen n,, isincreased from 2 to 4. Thisis becauseit hasa7/24 a2 29.17% share of the
total number of tickets, and withn,, = 4, it isallocated a 25% share deterministically, and the
remaining 4.17% share by lottery. Another interesting example is the error curve for n,, = 8
plotted in Figure 4-4(M,3). In this case, the absolute error never exceeds a single quantum. A
quick check of this client’s relative ticket share reveals that its entire 3/24 = 12.5% share is
allocated deterministically, totally eliminating all error due to randomization.

With morethan two clients, the maximum absol ute error under stride schedulingisno longer
bounded by asingle quantum. Figure4-4(S,13) revealsamaximum absolute error of 1.63 under
stride scheduling. In contrast, Figure 4-4(H,13) shows that the corresponding maximum error
under hierarchical stride scheduling is 1.25, a reduction of 23%. However, Figures 4-4(S,7)
and (H,7) indicate that the maximum absolute error for the 7-ticket client actually increases
under hierarchical stride scheduling, from 0.58 to 0.92 quanta. Hierarchical stride scheduling
provides a tighter bound on worst-case client error than ordinary stride scheduling. However,
for many distributions, the worst-case client error is much smaller than even the [1g .| bound
provided by hierarchical stride scheduling. Thus, the hierarchical scheme does not necessarily
improve either the worst-case or the average client error.

Figure 4-5 displays response-time distributions for each client under all four scheduling
mechanisms. Client response times have geometric distributions under lottery scheduling,
which appear linear on the logarithmic scale. Since each client has a smaller share of the
overall number of ticketsthanit did in the pairwise simulations presented in Figures4-2(L) and
4-3(L), al of the response-time distributions have larger standard deviations and longer tails.
The client shown in Figure 4-5(L,13) has the tightest distribution, ranging from 1 to 19 quanta
with a standard deviation of ¢ = 1.25 quanta. The client in Figure 4-5(L,1) has the widest
distribution, ranging from 1 to 243 quanta (off the scale), with o = 23.57 quanta.

The multi-winner lottery response-time distributions are plotted for n,, = 4. Theresponse-
time distributions for the larger clients in Figures 4-5(M,13) and (M,7) are dramatically im-
proved, while the distributions for the smaller clients, shown in Figures 4-5(M,3) and (M,1),
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display more modest improvements. The two larger clients, with 13 and 7 tickets, receive
deterministic allocations of 2 quanta and 1 quantum per superquantum, respectively. These
deterministic guaranteesdirectly trand ate into small maximum response times. In contrast, the
two smaller clients do not receive any deterministic guarantees, resulting in large maximum
response times of 71 and 226 quanta. Nevertheless, these still represent an improvement over
the single-winner lottery. The standard deviationisreduced fromo = 7.45 quantatoo = 5.84
guantafor the 3-ticket client in Figure 4-5(M,3), and from o = 23.57 to 0 = 22.04 quantafor
the single-ticket client in Figure 4-5(M,1).

As expected, the response-time distributions for the deterministic stride-based a gorithms
arevastly better than those for the randomized | ottery-based algorithms. The maximum spread
exhibited by any of the response-timedistributionsunder both stride scheduling and hierarchical
stride scheduling is only 4 quanta, in contrast to hundreds of quanta for the lottery-based
schedulers. Comparing the two stride-based approaches, the hierarchical scheduler reduces
the variability of the largest client from ¢ = 0.77 quantato ¢ = 0.53 quanta, as shown in
Figures 4-5(S,13) and (H,13). However, it also increases the variability of the other clients.
For example, the standard deviation for the 7-ticket client jumps from ¢ = 0.49 quanta to
o = 1.18 quanta.

Stride Scheduling vs. Hierarchical Stride Scheduling

Most of the simulation results for static environments are easily explained. The only exception
isthat the difference between stride scheduling and hierarchical stride schedulingisstill unclear.
Thehierarchical technique appearsto reduce client error and response-time variability for some
clients. However, it may aso have the opposite effect on a different subset of the clientsthat it
schedules.

Additional experiments are presented bel ow that examine the behavior of stride scheduling
and hierarchical stride scheduling for alarger number of clientsand awider range of ticket dis-
tributions. An additional half-stride variant of hierarchical stride scheduling is also considered.
Thisvariant is capable of achieving lower absolute error by starting each node halfway into its
stride, instead of at the beginning of its stride. Because a complete graphical presentation of
all smulation results would require too much space, summary statistics are presented for a set
of representative ticket distributions.

Figures 4-6 and 4-7 plot the mean error, maximum error, and response-time variability for
different sets of clients under stride scheduling, hierarchical stride scheduling, and half-stride
hierarchical scheduling. Each experiment consists of one hundred thousand allocations for a
particular ticket distribution. Seven different distributions of ticketsto clients are investigated.
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Figure 4-7: Stride vs. Hierarchical Stride Scheduling, 50 Clients. Simulation results for 50
clients with various distributions of tickets to clients: EQUAL —1:1:...:1, LARGE-49:1:... :1,
SEQ-1:2:...:50,PRIME-2:3:... :229, RAND-U — uniform random over [10, 100], RAND-N —
normal random with ¢ = 100 and ¢ = 20, RAND-G — geometric random with ¢ = 2. Each symbol
represents a single client under stride scheduling (triangle), hierarchical stride scheduling (square), or
half-stride hierarchical stride scheduling (circle).
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EQUAL is simply an equal distribution of one ticket to each client. LARGE is a distribution
in which one client owns half of the tickets, and all other clients have one ticket each. SEQ
sequentially allocates i tickets to the i™* client. PRIME allocates p; tickets to the it client,
wherep; isthe:*” prime number. RAND-U isauniform random distribution with aminimum of
10 ticketsand amaximum of 100 tickets. RAND-N isanormal (Gaussian) random distribution
with mean p = 100 tickets, and standard deviation o = 20 tickets. RAND-G is a geometric
random distribution with mean p = 2 tickets.

Figure 4-6(a) presents the mean absolute error, averaged over one hundred thousand al-
locations, for ten clients with the various ticket distributions described above. Each of the
mechanisms performsidentically for the EQUAL distribution. For the remaining ticket distri-
butions, hierarchical stride scheduling and its half-stride variant generally exhibit lower mean
error than ordinary stride scheduling. The half-stride technique consistently produces the
smallest mean error. The largest differences occur for the most skewed distributions, LARGE
and RAND-G. For RAND-U, hierarchical stride scheduling displays higher mean error than
ordinary stride scheduling, although the half-stride hierarchical variant is still best.

Figure 4-6(b) presents a similar graph that plots the maximum absolute error observed
over one hundred thousand allocations. The different mechanisms behave identically for
the EQUAL distribution. For the remaining ticket distributions, both hierarchical schemes
consistently produce the lowest maximum error for their worst-case client, with the single
exception of RAND-N, for which the basic hierarchical schemeis dightly worse than ordinary
stride scheduling. Onceagain, thelargest differencesoccur for LARGE and RAND-G, although
SEQ and PRIME aso exhibit significantly lower worst-case maximums under the hierarchical
techniques. The maximum error distributions for other clients (i.e., excluding the worst-case
client) are more varied. The half-stride hierarchical scheme generally produces the lowest
maximum errors for the most clients. Ordinary stride scheduling and the basic hierarchical
scheme are roughly comparablein this respect.

Figure 4-6(c) plots the response-time variability observed for each client over one hundred
thousand allocations. Response-time variability is independently measured for each client by
computing the coefficient of variation o; / 1;, where o; isthe standard deviation of the response-
time distribution associated with client c;, and ; is the mean of that distribution. This metric
provides a dimensionless, relative measure of the spread of a distribution. Simply plotting
absolute o; values would make it impractical to compare values across different clients and
distributions.

The results for response-time variability depicted in Figure 4-6(c) are almost completely
opposite to the results for absolute error. In general, the ordinary stride scheduling technique
produces the lowest response-time variability. The difference is greatest for RAND-U and
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RAND-N, for which stride scheduling outperformsthe hierarchical techniquesby nearly afactor
of two. However, two notable exceptions are LARGE and RAND-G. For these distributions,
both hierarchical techniques achieve a substantial reduction in response-time variability over
ordinary stride scheduling.

These results are consistent with the basic analytical results derived for hierarchical stride
scheduling. Hierarchical stride scheduling can produce multiplicative increases in response-
time variability for some ticket distributions. However, highly skewed distributions such as
LARGE and RAND-G generally involve large pairwise ratios that individually yield almost
no response-time variability. While the multiplicative effects of hierarchical stride scheduling
still expand the range of response times, the high pairwise ratios ensure that extreme values
in that range are very rare. For less skewed distributions such as RAND-U and RAND-
N, the multiplicative range-expanding effects of hierarchical stride scheduling result in high
response-time variability.

Figure4-7 presentsthe same metricsasFigure4-6 for alarger set of 50 clients. Qualitatively,
the results for 50 clients are largely the same as those for 10 clients. As expected, the
mechanisms behave identically for the EQUAL distribution. For LARGE and RAND-G, the
hierarchical techniquesstill significantly outperform ordinary stride scheduling intermsof both
absolute error and response-timevariability. For other distributions, the hierarchical techniques
are generally better in terms of absolute error, but worse in terms of response-time variability.
The larger number of clients substantially increases the response-time variability gap between
stride scheduling and the hierarchical techniquesfor SEQ, PRIME, and RAND-N.

4.2.2 Dynamic Environment

A key featureof both the | ottery-based and stride-based scheduling mechanismsistheir support
for dynamic operations. The following set of simulations examines the effects of frequent
dynamic changes. Dynamic modificationsto ticket allocationsare considered first, followed by
dynamic changes in the number of clients competing for aresource. Overall, the performance
of the scheduling mechanismsis largely unaffected by dynamic behavior, indicating that they
are well-suited to dynamic environments.

Dynamic Ticket M odifications

The notation [A,B] will be used to indicate a random ticket allocation that is uniformly
distributed from A to B. A new, randomly-generated ticket allocation is dynamically assigned
to each client with a 10% probability at the end of each quantum. On average, this causes
each client’sticket assignment to be recomputed every 10 quanta. Thus, the timing of dynamic
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changes to a client’s ticket allocation follows a geometric distribution, while its actual ticket
values are drawn from a uniform distribution. The appropriate client_modify() operation is
executed after each change. To compute error values, specified allocations were determined
incrementally. Each client’s specified allocation was advanced by ¢/7T on every quantum,
wheret isthe client’s current ticket allocation, and 7" is the current ticket total.

Figure 4-8 plots the absol ute error and response-time distributions that result from simul at-
ing two clientswith rapidly-changing dynamic ticket allocations. This datais representative of
simulation results over a large range of pairwise ratios and a variety of dynamic modification
techniques. For easy comparison, the average dynamic ticket ratio is identical to the static
ticket ratio used in Figure 4-2.

The graphs that appear in the first column of Figure 4-8 show the absolute error measured
over a series of 1000 allocations for a dynamic [5,9] : [2,4] ticket ratio. During these 1000
allocations, the ticket allocation for the larger client is modified 93 times, and the allocation
for the smaller client is modified 120 times. Despite the dynamic changes, the mean absolute
error for lottery scheduling, shown in Figure 4-8(L), is nearly identical to that measured for
the static 7: 3 ratio depicted in Figure 4-2(L). In general, the behavior of lottery scheduling is
insensitive to changes in ticket allocations, sinceit is a memoryless algorithm.

Three error curves are plotted in Figure 4-8(M) for multi-winner lottery scheduling, corre-
sponding to n,, = 2, 4, and 8 winners. For n,, = 2, the error curve is nearly identical to the
corresponding curve for the static environment shown in Figure 4-2(M). For n,, = 4andn,, =
8, the error is approximately 20% to 30% higher in the dynamic case. Thisincreaseismainly a
result of the need to terminate the current superquantum after each dynamic change. Since the
timing of dynamic changes is geometrically distributed for each client, large superquanta are
frequently interrupted. Nevertheless, the multi-winner lottery approach is still able to achieve
significant reductionsin error over ordinary lottery scheduling. It isimportant to note that the
well-behaved dynamic performance of multi-winner lottery scheduling is not accidental. For
example, many different schemes were attempted to avoid terminating the current superquan-
tum in response to a dynamic change. All of them resulted in error curves that were linear in
the number of dynamic changes, exceeding the error produced by ordinary lottery scheduling.

The resultsfor stride scheduling and hierarchical stride scheduling are identical when only
two clients are scheduled. As expected, the error for the stride-based schemes never exceeds
a single quantum, despite the frequent dynamic modifications to ticket allocations. However,
as can be seen in the small insets associated with each graph, the error-value patterns are much
more erratic for the dynamic ticket ratio in Figure 4-8(S) than for the static ticket ratio in
Figure 4-2(S).
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The graphs presented in the second and third columns of Figure 4-8 plot response-time
distributionsfor each client over one million allocations. For lottery scheduling, client response
times have a geometric distribution, which appears linear on the logarithmic scale. The
response-time distributions for the dynamic [5,9] : [2,4] ratio in Figure 4-8(L) are nearly the
same as the corresponding ones for the static 7: 3 ratio in Figure 4-2(L). The response-time
distributionsfor the multi-winner lottery with n.,, = 4 shownin Figure4-8(M) aremorevariable
than thosefor the static case graphed in Figure4-2(M). Thisisdueto therandomnessintroduced
by fluctuatingticket values, aswell asthe need to terminatethe current superquantum after every
dynamic change. Although the standard deviationfor thelarger clientisonly marginally higher
than in the static case, the standard deviation for the smaller client increases by approximately
26%. A similar patternisalso exhibited by the stride-based scheduling algorithms. In thiscase
the smaller client experiences an 86% increase in the standard deviation for its response-time
distribution, compared to the static case presented in Figure 4-2(S,3). Regardlessof thisrelative
increase, the response-time distributions for the deterministic stride-based techniques are still
dramatically less variable than those for the randomized | ottery-based schemes.

Figure 4-9 displays the absolute error measured for a larger set of four clients with a
[10,16]:[5,9] : [2,4] : 1 ticket allocation. This dynamic ratio was chosen to facilitate compar-
isons with Figure 4-4, which uses a static ratio with the same average values. Response-time
distributions have been omitted for the dynamic [10,16] : [5,9] : [2,4] : 1 smulations, since they
are not qualitatively different from the response-time distributions shown for the dynamic
[5,9] :[2,4] in Figure 4-8.

Each graph contained in Figure 4-9 plots the absolute error for a single client over 1000
alocations. During these 1000 allocations, the ticket assignments for each client are modified
94, 92, 116, and zero times, in order of decreasing ticket values. As for earlier ssimulations,
the results for lottery scheduling and multi-winner lottery scheduling are averaged over 1000
separateruns. Asexpected, the error curvesfor dynamic lottery schedulingin Figure 4-9(L) are
essentially identical to those for static lottery scheduling in Figure 4-4(L). Lottery scheduling
isamemoryless algorithm, and is not affected by dynamic changes.

The error curves for dynamic multi-winner lottery scheduling in Figure 4-9(M) have the
same shape as those for static multi-winner lottery scheduling in Figure 4-4(M). The dynamic
error curves have larger absolute values than their static counterparts, mainly due to the early
termination of superquantain response to dynamic changes. The only other notable difference
isbetween Figures4-9(M,[2,4]) and 4-4(M,3), for n,, = 8. Inthe static case, theresource share
for thisclient is perfectly matched by the deterministic 8-winner approximation, eliminating all
random error. Inthe dynamic case, thisisnolonger true, sincethe client’sown ticket allocation
varies by afactor of two, and the overall number of tickets also dynamically fluctuates.
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Figure 4-9: Dynamic Ticket Modifications, [10,16]:[5,9]:[2,4]:1 Allocation. Simulation
results for four clients with a dynamic [10,16] :[5,9] :[2,4] : 1 ticket ratio under lottery scheduling,
multi-winner lottery scheduling, stride scheduling, and hierarchical stride scheduling. Each graph plots
the absolute error for asingle client over 1000 allocations. A single run was used for each deterministic
technique (S, H), and 1000 separate runs were averaged for each randomized technique (L, M).

89



The results for dynamic stride scheduling, displayed in Figure 4-9(S), are comparable to
those for static stride scheduling, shown in Figure 4-4(S). In fact, the maximum absolute
error for the three largest clientsis slightly lower for the dynamic ticket ratio, and it is only
marginally higher for the smallest client. Of course, the error values are more erratic for
the dynamic environment, due to the fluctuations in relative ticket shares. Stride scheduling
can correctly support dynamic changes because the state associated with distinct clients is
completely independent. Thus, a dynamic ticket modification requires only a ssimple local
update to the state of the affected client.

The error curves plotted for dynamic hierarchical stride scheduling in Figure 4-9(H) are
also very similar to those graphed for static hierarchical stride scheduling in Figure 4-4(H).
Despite the frequent dynamic modificationsto ticket allocations, hierarchical stride scheduling
still achieves a lower error value for the worst-case client, shown in Figure 4-9(H,[10,16]),
than that produced by ordinary stride scheduling, shown in Figure 4-9(S,[10,16]). Dynamic
hierarchical stride scheduling still increases the absolute error associated with the client shown
in Figure 4-9(H,[5,9]), when compared to ordinary stride scheduling in Figure 4-9(S,[5,9]).

Dynamic Client Participation

The |ottery-based and stride-based scheduling mechanisms al so correctly support dynamic
changes in the number of clients competing for a resource. The behavior of each mechanism
was tested by simulating a dynamic environment. At the end of each quantum, every active
client has a 5% probability of leaving the system, and every inactive client has a 5% probability
of rejoining the system. Thus, each client follows an independent geometric distribution that
determineswhen it leaves and rejoins the system. An additional constraint was added to avoid
idle resource time by preventing a client from leaving the system when it is the last remaining
active client. The appropriate client_leave() and client_join() operations are executed when
clients leave and join the system. Specified allocations were determined incrementally, using
the same method described for dynamic ticket modifications.

An experiment involving dynamic client participation is not very interesting for only two
clients. Instead, four clients are smulated with the same 13: 7: 3: 1 ticket ratio used in earlier
experiments. Each graph contained in Figure 4-10 plotsthe absol ute error observed for asingle
client over 1000 allocations. During these 1000 alocations, the 13-ticket, 7-ticket, 3-ticket,
and 1-ticket clientsleave and rejoin the system 21, 28, 23, and 29 times, respectively. The error
values associated with each client are only plotted while that client is actively participating
in the resource competition. Thus, the white vertical bands visible in Figure 4-10 represent
periods of client inactivity that are the same across every experiment.
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Figure 4-10: Dynamic Client Participation, 13:7:3:1 Allocation. Simulation results for four
clients with a static 13:7:3: 1 ticket ratio under lottery scheduling, multi-winner lottery scheduling,
stride scheduling, and hierarchical stride scheduling. Each graph plots the absolute error for a single
client over 1000 allocations. A single run was used for each deterministic technique (S, H), and 1000
separate runs were averaged for each randomized technique (L, M).

91



Theresultsfor lottery scheduling are not surprising. The error curvesfor lottery scheduling
with dynamic client participation, shown in Figure 4-10(L) have the same familiar shape as
those for static lottery scheduling, displayed in Figure 4-4(L). However, in the dynamic case,
the absolute error levels are significantly lower. This reduction can be explained by the fact
that, on average, there are fewer clients competing for each quantum. Thus, each client has a
larger relative ticket share than in the static case, increasing its probability of winning (e.g., it
iscertaintowinif itisthe only active client). The error value associated with a client does not
change while the client isinactive, since only active clients are entitled to receive resources.

Asusual, three separate error curves are plotted for multi-winner lottery scheduling, corre-
sponding to n,, = 2, 4, and 8 winners. The dynamic error curvesin Figure 4-10(M) have the
same general shape as those presented for static multi-winner lottery scheduling in Figure 4-
4(M), with absolute values that are roughly comparable. Asfor dynamic ticket modifications,
the perfect deterministic approximation for the client in Figure 4-4(M,3) with n,, = 8 does not
extend to the dynamic case, due to fluctuations in tickets values as clients enter and leave the
system.

Stride scheduling with dynamic client participation exhibitserror valuesthat are sometimes
higher than those for stride scheduling in a static environment. The maximum error values
for the largest client in Figures 4-10(S,13) and 4-4(S,13) are nearly identical, as are those for
the smallest client, shown in Figures 4-10(S,1) and 4-4(S,1). However, the error values are
substantially higher under dynamic stride scheduling for the middle clientswith 7 and 3 tickets.
For example, the maximum error for the 7-ticket client more than doubles, from 0.58 quantain
Figure 4-4(S,7) to 1.20 quantain Figure 4-10. This increase can be attributed to competition
under a wide range of effective ticket ratios, due to fluctuations caused by dynamic client
participation. In any case, the absolute error for these clientsis still much lower than for the
worst-case client, which has a maximum error of 1.66 quantain Figure 4-10(S,13).

Hierarchical stride scheduling with dynamic client participation also displays higher error
thanthat observedin astatic environment. However, the absoluteerror level sarestill reasonably
small. The maximum error of 1.68 quanta is associated with the largest client, shown in
Figure 4-10(H,13). This is marginally larger than the maximum error of 1.66 quanta for
ordinary stride scheduling, displayed in Figure 4-10(S,13), and approximately 34% greater
than the maximum error of 1.25 quanta observed for the static case in Figure 4-4(H,13). Itis
interesting to note that early experiments with dlightly incorrect versions of the client leave()
and client_join() operationsfor hierarchical stride scheduling resulted in enormous error val ues.
In fact, transient error values even exceeded those for lottery scheduling. Thus, the fact that
these dynamic operations behave properly is neither trivial nor coincidental.
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Chapter 5
Prototype | mplementations

Thischapter describes prototypeimplementations of both | ottery-based and stride-based process
schedulers for real operating system kernels. The lottery scheduler prototype implements the
complete resource management framework described in Chapter 2. The stride scheduler
prototype implements only the core proportional-share scheduling operations, and does not
support ticket transfers or currencies. Quantitative experimentsinvolving awide range of user-
level applications demonstrate that both prototypes provide flexible, responsive control over
relative execution rates. Overall system overhead measured using the untuned prototypes is
comparableto that observed under the default timesharing policiesthat they replaced. However,
microbenchmarks indicate that the prototypes could benefit from numerous optimizations.

5.1 PrototypeLottery Scheduler

| originally developed lottery-based schedulers to manage fine-grained multithreading in the
Prelude parallel runtime system [WBC*91]. Both list-based and tree-based implementations
were devel oped, and experimental ticket-based |oad-balancing algorithms were also designed.
However, these early implementations lacked support for important higher-level abstractions,
such asticket transfers and currencies. Also, few applicationswere developed in Prelude, and
no facility was available to simultaneously execute multiple applications.

The prototype described in this section wasimplemented by modifying the Mach 3.0 micro-
kernel (MK82) [ABG'86, Loe92, BKLL93] on a25MHz MIPS-based DECStation 5000/125.
The standard scheduling quantum on this platform is 100 milliseconds. The prototype per-
mits proportional-share all ocation of processor time to control relative computation rates. Full
support is provided for ticket transfers, ticket inflation, ticket currencies, and compensation
tickets.
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| ANSI C prototype: unsigned int fast_random(unsigned int s)

fast random
mve $2, $4 | R2 = S(arg passed in R4)
I $8, 33614 | R8 =2 x constant A
mltu $2, $8 |HI,LO=A X S
|

nflo $9 R9 =Q =bits00..310f A x S
sri $9, $9, 1
nf hi $10 |R10=P =bits32..630f A x S
addu $2, $9, $10 |R2=S=P+Q
bltz $2, overflow [handleoverflow (rare)
j $31 | return (result in R2)
overflow
sl $2, $2, 1 | zero bit 31 of S’
srl $2, $2, 1
addiu $2, 1 |increment S’
j $31 | return (result in R2)

Figure5-1: Fast Random Number Gener ator. MIPS assembly-language code that efficiently im-
plements the Park-Miller pseudo-random number generator. Thisis amultiplicative linear congruential
generator defined by " = (A x S) mod (23! — 1), for A = 16807. A random number is generated
in approximately 10 RISC instructions.

511 Implementation

This section describes various implementation aspects of the lottery scheduling prototype.
Detailed descriptions are provided for generating random numbers, holding lotteries, and
supporting ticket transfers, ticket currencies, and nonuniform quanta.

Random Numbers

An efficient lottery scheduler requires afast way to generate uniformly-distributed random
numbers. The Park-Miller pseudo-random number generator produces high-quality random
numbers that are uniformly distributed between 0 and 23! — 1 [PM88, Car90]. | developed
a fast, low-level implementation of this generator that executes in approximately 10 RISC
instructions; Figure 5-1 lists MIPS assembly-language [Kan89] code for fast_random().

Lotteries

The prototype scheduler uses astraightforward | ottery implementation, similar to the one listed
in Figure 3-2. An alocation is performed by randomly selecting a winning ticket, and then
searching the list of runnable threads to locate the thread holding that ticket. Each allocation
requiresarandom number generation and O(n,.) operationsto traversearun queue of length .,
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accumulating a running ticket sum until it reaches the winning value. To decrease the average
search length, a simple “move-to-front” heuristic is used: whenever a thread is selected, it is
moved to the front of thelist. Since those threadswith the largest ticket all ocations are sel ected
most frequently, this heuristic is very effective when the distribution of tickets to clients is
uneven.

Kernel Interface

Tickets and currencies are implemented as dynamically-allocated kernel objects with repre-
sentations that are very similar to those depicted in Figure 2-2. A minimal lottery scheduling
interface is exported by the microkernel to allow these objects to be manipulated. This in-
terface consists of operations to create and destroy tickets and currencies, operations to fund
and unfund a currency (by adding or removing a ticket from its list of backing tickets), and
operations to compute the current value of tickets and currenciesin base units.

The lottery scheduling policy co-exists with the standard timesharing and fixed-priority
policies. A few high-priority threads (such as the Ethernet driver) created by the Unix server
(UX41) remain at their original fixed priorities. Thisisaccomplished viaan ad-hoc mechanism:
aconstant “lottery priority” isassociated with all lottery-schedul ed threads, with adefault value
that is higher than typical user thread priorities, but lower than those for fixed-priority kernel
and Unix server threads. In principle, al priority-scheduled threads could be changed to use
lottery scheduling, although thiswould require numerous modificationsto many different areas
of the standard Mach system. Alternatively, a better inter-policy scheduling mechanism could
be defined to allow diverse policiesto co-exist. For example, a proportional-share meta-policy
could allocate a fixed share of the processor to each distinct scheduling policy.

Ticket Currencies

The prototype uses a simple scheme to convert ticket amounts into base units. Each currency
maintains an active amount sum for all of itsissued tickets. A ticket is active whileit is being
used by athread to compete in a lottery. When athread is removed from the run queue, its
tickets are deactivated; they are reactivated when the thread rejoins the run queue.! If aticket
deactivation changes a currency’s active amount to zero, the deactivation propagates to each
of its backing tickets. Similarly, if aticket activation changes a currency’s active amount from
zero, the activation propagates to each of its backing tickets.

LA blocked thread may transfer its tickets to another thread that will actively use them. For example, athread
blocked pending areply from an RPC transfersiits tickets to the server thread on which it iswaiting.
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Figure 5-2: Example Currency Graph. Two users compete for computing resources. Alice is
executing two tasks. taskl is currently inactive, and task2 has two runnable threads. Bob is executing
one single-threaded task, task3. The current valuesin base units for the runnable threads are thread2 =
400, thread3 = 600, and thread4 = 2000. In general, currencies can also be used for groups of users or
applications, and currency relationships may form an acyclic graph instead of astrict hierarchy.

A currency’s value is computed by summing the value of its backing tickets. A ticket's
value is computed by multiplying the value of the currency in which it is denominated by its
share of the activeamount issued in that currency. The value of aticket denominated in the base
currency is defined to be its face value amount. An example currency graph with base-value
conversions is presented in Figure 5-2. Currency conversions can be accelerated by caching
values or exchange rates, although thisis not implemented in the prototype.

As described earlier, the scheduler uses a simple list-based lottery with a “move-to-front”
heuristic. To handle multiple currencies, a winning ticket value is selected by generating a
random number between zero and thetotal number of activeticketsin thebase currency. Therun
queueisthen traversed as described earlier, except that the running ticket sum accumulatesthe
value of each thread’s currency in base unitsuntil thewinning valueisreached. Since currency
conversions are deferred until ticket values are actually needed, the prototype employs the lazy
implementation strategy discussed in Section 3.5.4.
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Ticket Transfers

The mach-msg() system call was modified to temporarily transfer tickets from client to server
for synchronous RPCs. Thisautomatically redirectsresourcerightsfrom ablocked client to the
server computingonitsbehalf. A transfer isimplemented by creating anew ticket denominated
inthe client’s currency, and using it to fund the server’s currency. If the server thread is already
waiting when mach_msg() performs a synchronous call, it is immediately funded with the
transfer ticket. If no server thread is waiting, then the transfer ticket is placed on alist that is
checked by the server thread when it attempts to receive the call message.? During areply, the
transfer ticket is ssmply destroyed.

Nonuniform Quanta

As discussed in Section 3.1.3, a thread which consumes only a fraction f of its alocated
time quantum is automatically granted transient compensation tickets that inflate its value by
1/f until the thread starts its next quantum. This is implemented by associating a single
compensation ticket object with each thread. This compensation ticket is denominated in
the base currency, and its amount is dynamically adjusted whenever its associated thread is
descheduled. The compensation ticket will haveavalue of zeroif the thread always consumesa
standard quantum. The use of compensation ticketsis consi stent with proportional sharing, and
permits 1/0O-bound tasks and other applicationsthat use few processor cyclesto start quickly.

User Interface

Currenciesand tickets can be manipul ated viaa command-lineinterface. User-level commands
exist to create and destroy tickets and currencies (nkt kt , rnt kt , mkcur, rmcur), fund and
unfund currencies (f und, unf und), obtaininformation (I st kt , | scur ), and to execute a shell
command with specified funding (f undx). Since the Mach microkernel has no concept of
user and the Unix server was not modified, these commands are setuid root.> A production
lottery scheduling system should protect currencies by using access control lists or Unix-style
permissions based on user and group membership.

2In this case, it would be preferable to instead fund all threads capable of receiving the message. For example,
a server task with fewer threads than incoming messages should be directly funded. This would accelerate all
server threads, decreasing the delay until one becomes available to service the waiting message.

3The f undx command only executes as root to initialize its task currency funding. It then performs a setuid
back to the original user before invoking exec().
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Figure 5-3: Relative Rate Accuracy. For each allocated ratio, the observed ratio is plotted for each
of three 60 second runs. The gray line indicates the ideal where the two ratios are identical.

5.1.2 Experiments

To evaluate the prototype |ottery scheduler, experiments were conducted to quantify its ability
to flexibly, responsively, and efficiently control the relative execution rates of computations.
The applications used in these experimentsinclude the compute-bound Dhrystone benchmark,
a Monte-Carlo numerical integration program, a multithreaded client-server application for
searching text, and competing MPEG video viewers.

Throughput Accuracy

Thefirst experiment measures the accuracy with which thelottery scheduler can control the
relative execution rates of computations. Each point plotted in Figure 5-3 indicatesthe relative
execution rate that was observed for two tasks executing the Dhrystone benchmark [Wei84]
for sixty seconds with a given relative ticket alocation. Three runs were executed for each
integral ratio between one and ten. With the exception of therun for which the 10: 1 allocation
resultedinan averageratio of 13.42: 1, al of the observedratiosare closeto their corresponding
allocations®. As expected, the variance is greater for larger ratios. However, even large ratios
converge toward their allocated values over longer time intervals. For example, the observed
ratio averaged over athree minute period for a20: 1 alocation was 19.08: 1.

4The observed 13.42:1 ratio is not really unexpected. It still falls within the 95% confidence interval for a
1

binomial distribution with p = 7, corresponding to the 10: 1 ticket ratio specified for that experiment.
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Figure 5-4: Fairness Over Time. Two tasks executing the Dhrystone benchmark with a2: 1 ticket
alocation. Averaged over the entire run, the two tasks executed 25378 and 12619 iterations per second,
for an actual ratio of 2.01: 1.

Although the results presented in Figure 5-3 indicate that the scheduler can successfully
control computation rates, its behavior should also be examined over shorter time intervals.
Figure 5-4 plots averageiteration counts over aseries of 8 second timewindowsduringasingle
200 second executionwith a2: 1 allocation. Although thereis clearly some variation, the two
tasksremain closeto their allocated ratios throughout the experiment. Notethat if ascheduling
quantum of 10 millisecondswere used instead of the 100 millisecond Mach quantum, the same
degree of fairness would be observed over a series of subsecond time windows.

Flexible Control

A much more interesting use of lottery scheduling involves dynamically-controlled ticket
deflation. A practical application that benefits from such control is the Monte-Carlo algorithm
[PFTV88]. Monte-Carlo is a probabilistic algorithm that is widely used in the physical sci-
ences for computing average properties of systems. Since errors in the computed average are
proportional to 1/+/n, where n isthe number of trials, accurate results require alarge number
of trials.

Scientists frequently execute several separate Monte-Carlo experiments to explore various
hypotheses. It is often desirable to obtain approximate results quickly whenever a new exper-
iment is started, while allowing older experiments to continue reducing their error at a slower
rate [Hog88]. This goal would be nearly impossible with conventional schedulers, but can be
easily achieved in the prototype system by dynamically adjusting an experiment’sticket value
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Figure 5-5: Monte-Carlo Execution Rates. Three identical Monte-Carlo integrations are started
two minutes apart. Each task periodically sets its ticket value to be proportiona to the square of its
relative error, resulting in the convergent behavior. The “bumps’ in the curves mirror the decreasing
slopes of new tasks that quickly reduce their error.

as a function of its current relative error. This alows a new experiment with high error to
quickly catch up to older experiments by executing at a rate that starts high but then tapers off
asitsrelative error approachesthat of its older counterparts.

Figure5-5 plotsthetotal number of trialscomputed by each of three staggered Monte-Carlo
tasks. Each task is based on the sample code presented in [PFTV88], and is allocated a share
of time that is proportional to the square of its relative error.> When a new task is started, it
initially receives a large share of the processor. This share diminishes as the task reduces its
error to avalue closer to that of the other executing tasks.

A similar form of dynamic control may also be useful in graphics-intensive programs. For
example, a rendering operation could be granted a large share of processing resources until
it has displayed a crude outline or wire-frame, and then given a smaller share of resources to
compute a more polished image.

Client-Server Computation

As mentioned earlier, the Mach IPC primitive mach-msg() was modified to temporar-
ily transfer tickets from client to server on synchronous remote procedure calls. Thus, a
client automatically redirects its resource rights to the server that is computing on its behalf.

5Any monotonically increasing function of the relative error would cause convergence. A linear function
would cause the tasks to converge more slowly; a cubic function would result in more rapid convergence.
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Figure 5-6: Query Processing Rates. Three clients with an 8:3: 1 ticket allocation compete for
service from a multithreaded database server. Each plotted symbol indicates the completion of a query.
The observed throughput and response time ratios closely match this allocation.

Multithreaded servers will process requests from different clients at the rates defined by their
respectiveticket allocations.

| devel oped asimple multithreaded client-server application that resembles aspects of many
databases and information-retrieval systems. The server initially loads a 4.6 Mbyte text file
“database” containing the complete text to all of William Shakespeare's plays.® It then forks
off several worker threads to process incoming queries from clients. One query operation
supported by the server is a case-insensitive substring search over the entire database, which
returns a count of the matches found.

Figure 5-6 presents the results of executing three database clients with an 8:3: 1 ticket
allocation. Theserver hasnoticketsof itsown, and reliescompl etely upon theticketstransferred
by clients. Each client repeatedly sends requests to the server to count the occurrences of the
same search string.” The high-priority client issues atotal of 20 queries and then terminates.
The other two clients continue to issue queries for the duration of the entire experiment.

The ticket allocations affect both response time and throughput. When the high-priority
client has completed its 20 requests, the other clients have completed a total of 10 requests,
matching their overall 8: 4 allocation. Over the entire experiment, the clientswith a3: 1 ticket
allocation respectively complete 38 and 13 queries, which closely matches their alocation,

6A disk-based database could use a proportional-share mechanism to schedule disk bandwidth; this is not
implemented in the prototype. A discussion of proportional-share disk scheduling appearsin Section 6.3.

"The string used for this experiment was | ot t ery, which incidentally occurs a total of eight times in
Shakespeare's plays.
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despite their transient competition with the high-priority client. While the high-priority client
is active, the average response times seen by the clients are 17.19, 43.19, and 132.20 seconds,
yielding relative speeds of 7.69:2.51: 1. After the high-priority client terminates, the response
times are 44.17 and 15.18 seconds, for a 2.91:1 ratio. For all average response times, the
standard deviation isless than 7% of the average.

A similar form of control could be employed by World Wide Web servers or transaction-
processing applicationsto manage the response times seen by competing clientsor transactions.
This would be useful in providing different levels of service to clients or transactions with
varying importance. Commercial servers could even sell tickets to clients demanding faster
service. Of course, tickets would require an external data representation to be included with
networked requests to servers. Secure cryptographic techniques could also be used to prevent
ticket forgery and theft [Sch94].

Multimedia Applications

Media-based applications are another domain that can benefit from lottery scheduling. For
example, Compton and Tennenhouse described the need to control the quality of service when
two or more video viewers are displayed — alevel of control not offered by current operating
systems [CT94]. They attempted, with mixed success, to control video display rates at the
application level among a group of mutually trusting viewers. Cooperating viewers employed
feedback mechanismsto adjust their relative frame rates. |nadequate and unstable metrics for
system load necessitated substantial tuning, based in part on the number of active viewers.
Unexpected positive feedback loops also developed, leading to significant divergence from
intended allocations.

Lottery scheduling enables the desired control at the operating-system level, eliminating
the need for mutually trusting or well-behaved applications. Figure 5-7 depicts the execution
of three npeg_pl ay video viewers (A, B, and C) displaying the same music video. Tickets
were initially allocated to achieve relative display ratesof A: B:C = 3:2:1, and were then
changedto 3:1: 2 at thetimeindicated by thearrow. The observed per-second framerateswere
initially 2.03:1.59:1.06 (1.92:1.50: 1 ratio), and then 2.02:1.05:1.61 (1.92: 1: 1.53 ratio)
after the change. Unfortunately, these results were distorted by the round-robin processing of
client requests by the single-threaded X 11R5 server. When run with the - no di spl ay option,
frame rates such as 6.83:4.56: 2.23 (3.06: 2.04: 1 ratio) were typical.

102



Cumulative Frames

Figure 5-7: MPEG Video Rates. Three MPEG viewers are given an initiadl A:B:C =3:2:1
alocation, which is changed to 3:1: 2 at the time indicated by the arrow. The total number of frames
displayed is plotted for each viewer. The actua frame rate ratios were 1.92:1.50: 1 and 1.92: 1: 1.53,
respectively, due to distortions caused by the X server.

Load I nsulation

Support for multiple ticket currencies facilitates modular resource management. A currency
defines an abstraction barrier that locally containsintra-currency fluctuations such asinflation.
The currency abstraction can be used to flexibly isolate or group users, tasks, and threads.

Figure 5-8 plots the progress of five tasks executing the Dhrystone benchmark. Currencies
A and B have identical funding. Tasks A1 and A2 have alocations of 100.A and 200.A4,
respectively. Tasks B1 and B2 have alocations of 100.B and 200.5, respectively. Halfway
through the experiment, a new task, B3, is started with an allocation of 300.B. Although this
inflates the total number of tickets denominated in currency B from 300 to 600, there is no
effect on tasks in currency A. The aggregate iteration ratio of A tasksto B tasksis 1.01:1
before B3 isstarted, and 1.00: 1 after B3 isstarted. The slopesfor theindividual tasksindicate
that A1 and A2 are not affected by task B3, while B1 and B2 are slowed to approximately
half their original rates, corresponding to the factor of two inflation caused by B3.

System Over head

The core lottery scheduling mechanism is extremely lightweight; a tree-based lottery need
only generate a random number and perform lgn. additions and comparisons to select a
winner among n. clients. Thus, low-overhead lottery scheduling is possible in systems with a
scheduling granularity as small as a thousand RISC instructions.
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Figure 5-8: Currencies Insulate Loads. Currencies A and B are identically funded. Tasks Al
and A2 are respectively allocated tickets worth 100.A and 200.A. Tasks B1 and B2 are respectively
allocated tickets worth 100.B and 200.B. Halfway through the experiment, task B3 is started with an
alocation of 300.B. The resulting inflation is locally contained within currency B, and affects neither
the progress of tasksin currency A, nor the aggregate A : B progress ratio.
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The prototype lottery scheduler for Mach, which includes full support for currencies, has
not been optimized. For example, the prototype uses a straightforward list-based | ottery and a
simple scheme for converting ticket amounts into base units. Code is also executed to update
metrics and check assertions at runtime, and a significant amount of additional overhead is
incurred by remaining compatible with the existing Mach scheduling framework.

A simple microbenchmark was developed to force continuous scheduling allocations by
yielding the processor in atight loop via the Mach thread_switch() system trap. The average
cost per allocation was determined by dividing arelatively large aggregate runtime, measured
with gettimeofday(), by the number of yields. Three separate runs were performed for each
experiment, which consisted of executing one or more tasks that each invoked one million
scheduling operations.

Under the unmodified Mach kernel, the average allocation costs for one, two, four, and
eight concurrent microbenchmark tasks were 32, 43, 42, and 41 microseconds, respectively.
The same experiment using the prototype lottery scheduler revealed costs of 122, 170, 188,
and 216 microseconds, respectively. Thus, the unoptimized lottery scheduler is approximately
four to five times dower than the default timesharing scheduler. However, this inefficiency
should be interpreted as the result of a naive implementation, and not as an inherent aspect
of lottery scheduling. Since numerous optimizations could be made to the list-based |ottery,
simple currency conversion scheme, and other untuned aspects of the implementation, efficient
lottery scheduling does not pose any challenging problems.

To assess theimpact on overall system overhead, identical executablesand workloadswere
executed under both the prototype kernel and the unmodified Mach kernel; three separate
runs were performed for each experiment. Overall, the overhead measured using the prototype
lottery scheduler is comparabl e to that measured for the standard Mach timesharing policy. The
first experiment consisted of three Dhrystone benchmark tasks running concurrently for 200
seconds. Compared to unmodified Mach, 2.7% fewer iterations were executed under |ottery
scheduling. For the same experiment with eight tasks, lottery scheduling was observed to be
0.8% slower. However, the standard deviations across individua runs for unmodified Mach
were comparabl e to the absol ute differences observed between the kernels. Thus, the measured
differences are not very significant.

A performance test was also run using the multithreaded * database” server that was used
for the earlier client-server experiment shown in Figure 5-6. Five client tasks each performed
20 queries, and the time between the start of the first query and the completion of the last query
was measured. Thisapplicationwasfound to execute 1.7% faster under |ottery scheduling. For
unmodified Mach, the average run timewas 1155.5 seconds; with lottery scheduling, the average
time was 1135.5 seconds. The standard deviations across runs for this experiment were less
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than 0.1% of the averages, indicating that the small measured differencesare significant. Under
unmodified Mach, threads with equal priority are run round-robin; with lottery scheduling, it
is possible for a thread to win several lotteriesin arow. This ordering difference may affect
locality, resulting in slightly improved cache and TLB behavior under lottery scheduling.

5.2 Prototype Stride Scheduler

The prototype scheduler described in this section was implemented to test the performance
of the basic stride scheduling approach in areal system. The prototype was implemented by
modifying the Linux 1.1.50 kernel [Bok95] on a 25MHz i1486-based IBM Thinkpad 350C. Due
to time constraints, support was not implemented for higher-level abstractions such as ticket
transfers and currencies. As predicted by the simulations and analysis presented in Chapter 4,
the throughput accuracy of the prototype stride scheduler is significantly better than that for the
prototype lottery scheduler described in Section 5.1.

52.1 Implementation

This section describes various implementation aspects of the stride scheduling prototype. |
primarily changed the Linux kernel code that handles process scheduling, switching from a
conventional priority scheduler to a stride-based algorithm with a standard scheduling quantum
of 100 milliseconds. Fewer than 300 lines of source code were added or modified to implement
the prototype scheduler. The actual implementation is nearly identical to the dynamic stride
scheduling code listed in Figures 3-13 and 3-15.

Kernel Interface

Ticketsare smply represented by integer values associated with each Linux process. Two new
system calls permit ticket allocations to be specified or queried for any process. Higher-level
abstractions such asticket transfers and currencies are not implemented. However, full support
is provided for dynamic client participation, dynamic ticket modifications, and nonuniform
quanta.

Fixed-Point Stride Representation

Consistent with the implementation strategy described in Section 3.3, a fixed-point integer
representation is used for strides. The precision of relative rates that can be achieved with
such arepresentation depends on both the value of stride; and the relative ratios of client ticket
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allocations. For example, with stride; = 2%°, and a maximum ticket allocation of 21 tickets,
ratios are represented with 10 bits of precision. Thus, ratios close to unity resulting from
allocationsthat differ by only one part per thousand, such as 1001 : 1000, can be supported.

Because stride, is a large integer, stride values will also be large for clients with small
allocations. Since pass values are monotonically increasing, they will eventually overflow the
machine word size after alarge number of allocations. If 64-bit integers are used to represent
strides, thisis not a practical problem. For example, with stride, = 22° and a worst-case client
tickets = 1, approximately 2% allocations can be performed before an overflow occurs. At
one allocation per millisecond, centuries of real time would elapse before the overflow. The
prototype stride scheduler makes use of the 64-bit “| ong | ong” integer type provided by the
GNU C compiler.

5.2.2 Experiments

Several experimentswere conducted to eval uate the effectivenessof the prototype stride sched-
uler. To facilitate comparisons with the data presented for the prototype lottery scheduler in
Section 5.1.2, the same (or similar) applications are used with the prototype stride scheduler.
These applications include a compute-bound integer arithmetic benchmark, a Monte-Carlo
numerical integration program, and competing MPEG video viewers.

Throughput Accuracy

The first experiment tests the accuracy with which the prototype can control the relative
execution rate of computations. The Dhrystone benchmark used for the corresponding exper-
iment under lottery scheduling is floating-point intensive. Unfortunately, the platform used
for stride scheduling lacks hardware support for floating-point arithmetic; all floating-point
operations are trapped and emulated in the Linux kernel. The integer-based ar i t h benchmark
[Byt91] isused instead of Dhrystone to ensure consistent application-level measurements.

Each point plotted in Figure 5-9 indicates the relative execution rate that was observed
for two processes running the compute-bound ar i t h integer arithmetic benchmark. Three
thirty-second runs were executed for each integral ratio between one and ten. In all cases,
the observed ratios are within 1% of the ideal. Experiments involving higher ratios yielded
similar results. For example, the observed ratio for a 20: 1 alocation ranged from 19.94 to
20.04, and the observed ratio for a50: 1 allocation ranged from 49.93 to 50.44. The prototype
stride scheduler clearly achieves much better throughput accuracy than the prototype lottery
scheduler, which exhibited a worst-case error of approximately 34% for the same experiment,
as shown in Figure 5-3.
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Figure5-9: Relative Rate Accuracy. For each allocation ratio, the observed iteration ratio is plotted
for each of three 30 second runs. The gray line indicates the ideal where the two ratios are identical.
The observed ratios are within 1% of the ideal for all data points.
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Figure 5-10: Fairness Over Time. Two processes executing the compute-bound ar i t h benchmark
with a 3: 1 ticket allocation. Averaged over the entire run, the two processes executed 2409.18 and
802.89 iterations per second, for an actua ratio of 3.001:1.
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Figure 5-11: Monte-Carlo Execution Rates. Three identical Monte-Carlo integrations are started
two minutes apart. Each task periodically sets its ticket value to be proportional to the square of its
relative error, resulting in the convergent behavior. The “bumps’ in the curves mirror the decreasing
slopes of new tasks that quickly reduce their error.

The next experiment examines the scheduler’s behavior over shorter time intervals. Fig-
ure 5-10 plots average iteration counts over a series of 2-second time windows during asingle
60 second execution with a 3: 1 allocation. The two processes remain close to their allocated
ratios throughout the experiment. Note that the use of a 10 millisecond time quantum instead
of the scheduler’s 100 millisecond quantum would result in the same degree of fairness over a
seriesof 200 millisecond timewindows. Thisexperiment also demonstratesthat stride schedul-
ing issignificantly more accuratethan lottery scheduling over short timeintervals. Comparison
with Figure 5-4 revealsthat the variability exhibited over 8-second time windows under |ottery
scheduling is considerably higher than that measured over shorter 2-second windows under
stride scheduling.

Flexible Control

Figure5-11 repeatsthe concurrent Monte-Carl o integration experiment described for | ottery
scheduling in Section 5.1.2. The Monte-Carlo code makes extensive use of floating-point
arithmetic, and the platform used for stride scheduling emulates floating-point operations
in software. As a result, this application runs more than 100 times as slowly under stride
scheduling. Nevertheless, the general shapes of the curves depicted in Figure 5-11 for stride
scheduling arenearly identical to those shownin Figure5-5for lottery scheduling. Althoughthe
absol ute per-process progressdiffersby more than two orders of magnitude acrossthe platforms,
their relative progress rates are similar because the Monte-Carlo error is till proportiona to
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Figure 5-12: MPEG Video Rates. Three MPEG viewers are given an initidl A:B:C =3:2:1
alocation, which is changed to 3:1: 2 at the time indicated by the arrow. The total number of frames
displayed is plotted for each viewer. The actual frame rate ratios were 3.05:2.02: 1 and 3.02:1:1.99,
respectively.

1/4/n, wheren isthenumber of trialscompleted. Since proportional-sharescheduling specifies
relative computation rates, the qualitative behavior for this experiment is largely time-scale
invariant.

Multimedia Applications

The concurrent MPEG video viewer experiment described for lottery scheduling in Sec-
tion 5.1.2 was al so repeated under stride scheduling. Figure 5-12 depictsthe execution of three
nmpeg_pl ay video viewers (A4, B, and C) displaying the same music video. An A:B:C =
3:2:1ticket ratio was initially specified, and was changed to 3: 1: 2 at the time indicated by
the arrow. The observed per-second frame rates were initially 4.18:2.77:1.37 (3.05:2.02: 1
ratio), and then 4.19:1.39: 2.77 (3.02: 1.00: 1.99 ratio) after the change.

Unlike the results for lottery scheduling, which were distorted by round-robin X server
processing, the observed ratios match the intended all ocations extremely well. The explanation
for this difference is that compared to Mach, the X server requires a much smaller fraction
of system resources under Linux. For example, npeg_pl ay is able to use a shared-memory
extension under Linux that is not supported by Mach, significantly reducing overhead. The
XFree86 server used with Linux is aso optimized for PC video cards, making it much faster
than the generic MIT X server used under Mach with alow-end workstation display.
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System Over head

A ssmplemicrobenchmark wasdevel oped to force continuous scheduling allocationsby yielding
theprocessor inatight loop. A new yield() system call wasadded to Linux by trivially modifying
the existing pause() system call. The average cost per allocation was determined by dividing
arelatively large aggregate runtime, measured with gettimeofday/(), by the number of yields.
Three separate runs were performed for each experiment, which consisted of executing one or
more tasks that each invoked one million scheduling operations.

Under the standard Linux kernel, the average allocation costs for one, two, four, and eight
concurrent microbenchmark tasks were 160, 161, 162, and 171 microseconds, respectively.
The same experiment using the prototype stride scheduler revealed costs of 181, 209, 224, and
253 microseconds, respectively. Thus, the prototype stride scheduler is approximately 15% to
50% slower than the default Linux scheduler. However, most of this additional overhead could
be eliminated by optimizing the stride schedul er implementation.

Neither the standard Linux scheduler nor the prototype stride scheduler is particularly
efficient. For example, the Linux scheduler performs a linear scan of all processes to find the
one with the highest priority. The stride scheduler prototype a so performs alinear scan to find
the process with the minimum pass; an O(lgn,) time implementation would have required
substantial changes to existing kernel code.

The stride scheduler prototype al so incurs additional overhead by checking each processto
identify state changes (e.g., from runnable to waiting) during every allocation. This inefficient
approach provided a simple solution to the problem of updating stride scheduling state when
the set of active processes dynamically changes. A better solution would be to change Linux
to use a common routine whenever process states are changed. Unfortunately, inline updates
occur in numerous sections of kernel and device driver code.

Several additional performance tests were executed to assess the overall overhead imposed
onthesystem by the prototype stride schedul er. Theresultsindicatethat the system performance
measured using the prototype is comparable to that measured for the standard Linux process
scheduler. Compared to unmodified Linux, groups of one, two, four, and eight concurrent
ari t h benchmark processes each completed fewer iterations under stride scheduling, but the
difference was aways less than 0.2%.
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Chapter 6
Scheduling Diver se Resources

Proportional -share schedul ers can be used to manage many diverse resources. In general, the
mechanisms described in Chapter 3 can be used to allocate resources wherever queuing is
necessary for resource access. This chapter presents extensions to these basic mechanisms,
and introduces several novel resource-specific algorithms for proportional-share scheduling.
The first section explores proportional-share mechanisms designed to schedule access to syn-
chronization resources, such as locks. The next section introduces both randomized and de-
terministic algorithms for dynamically managing space-shared resources. Proportional-share
scheduling of disk bandwidth is examined in the following section. Finally, the last section
discusses issues associated with simultaneously scheduling multiple resources.

6.1 Synchronization Resources

Contention due to synchronization can substantially affect computation rates. This section
shows that significant distortions of intended throughput rates can occur when a proportional -
shareprocessor schedul er iscombined with simplefirst-come, first-served processing of locking
requests. Proportional-share techniques are proposed for simultaneously managing both lock
accesses and processor time.  Simulation results are presented that demonstrate successful
control over client computation rates, despite competition for locks.

6.1.1 Mechanisms

The same proportional -share mechanisms used to allocate processor time can also be used to
control lock access. Either randomized lottery scheduling or deterministic stride scheduling
can be used, athough stride scheduling is generally preferable since it is more accurate.
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Regardless of the underlying algorithm, a straightforward cross-application of proportional-
share scheduling to locks isinsufficient for achieving specified throughput rates.

Simple proportional-share lock scheduling exhibits a problem that is very similar to the
priority inversion problem associated with priority scheduling [LR80, SRL90]. A smple case
of priority inversion can occur with three clients: alow-priority client that holds alock needed
by a high-priority client, and a medium-priority client that does not need the lock to execute.
In this case, the high-priority client must wait for the low-priority client to release the lock, but
the medium-priority client preventsthe low-priority client from making progress. The duration
of this inversion in priorities can be unbounded. Priority-inheritance protocols have been
developed to prevent priority inversion by effectively executing thelock owner at the maximum
priority of al the clients waiting to acquire the lock [SRL90].

Inthe context of proportional-share scheduling, unbounded priority inversionisnot possible,
since al clients with non-zero ticket allocations are guaranteed to make progress. However, a
low-ticket client that holdsalock needed by ahigh-ticket client canstill executevery slowly, due
to competition with other clients for the processor. This distortion can cause ticket inversion,
resulting in client throughput rates that are not proportional to their ticket allocations.

Ticket inheritanceis a partial solution to ticket inversion for proportional-share schedulers
thatissimilar to priority inheritancefor priority schedulers. A client that ownsalock temporarily
inherits the sum of the tickets associated with al clients waiting to acquire the lock. Ticket
inheritanceis an incomplete solution to ticket inversion becauseit introducesits own distortion
by favoring lock owners. An extension that compensates for this problem will be presented
after a discussion of the basic approach.

Ticket inheritance can be implemented in a straightforward manner using ticket transfers
and currencies. Each proportionally-scheduled lock has an associated lock currency and an
inheritance ticket issued in that currency. All clients that are blocked waiting to acquire the
lock perform ticket transfersto fund the lock currency. The lock transfersits inheritance ticket
to the client which currently holds the lock. The net effect of these transfersis that a client
which acquiresthelock executeswith its own funding plus the funding of all waiting clients, as
depicted in Figure 6-1. This avoidsthe ticket inversion problem, since alock owner with little
funding will execute more quickly while a highly-funded client remains blocked on the lock.

When a client releases a lock, a proportional-share allocation is performed among the
waiting clientsto select the next lock owner. The client then moves the lock inheritance ticket
to the new owner, and yields the processor. The next client to execute may be the selected
waiter or some other client that does not need the lock; the normal processor scheduler will
choose fairly based on relative funding.
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Figure 6-1: Lock Ticket Inheritance. Clientsc3, c7, and c8 are waiting to acquire alock, and have
transferred their funding to the lock currency. Client c2 holdsthe lock, and inherits the aggregate waiter
funding through the backing ticket denominated in the lock currency. Instead of showing the backing
tickets associated with each client, shading is used to indicate relative funding levels.
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Proportional-share scheduling with ticket inheritance prevents severe distortions in client
throughput rates caused by ticket inversion. Unfortunately, ticket inheritance also introduces
itsown distortion by favoring clientsthat hold locks. Infact, any client can effectively boost its
resource share by acquiring a highly-contended lock and holding it for along time. Moreover,
such clients cannot ssimply have their lock access preempted or terminated after exceeding a
predefined quantum, because they may leave shared datain an inconsistent state. An exception
is systems based on atomic transactions [ Tan92], which can abort misbehaving clients safely.

A more general solution! isto requirethat each client effectively repay any inheritance that
it receives. With an underlying stride-based schedul er, this can be implemented by maintaining
an additional repay state variablewith each client. During each incremental update of aclient’s
pass value, repay is advanced by the difference between the actual increment (based on the
current stridethat includesinherited tickets) and theincrement that would have occurred without
the inherited tickets. When the client releasesthe lock, its passvalue is advanced by repay, and
repay isreset to zero. With an underlying lottery-based scheduler, a similar approach could be
implemented using negative compensation tickets. Inheritance repayment implicitly assumes
that aquantum now isequivalent to aquantum later. Thus, it will be only approximately correct
when dynamic contention for resources causes the total number of tickets competing for each
resource to vary over time.

Another implementation issue is support for dynamic operations and nonuniform lock
gquanta. The standard techniques described in Chapter 3 can be applied, but additional per-
client state is required to hold scheduling information for each lock that it may use. While the
state required for each lock is minimal, the worst-case aggregate overhead could be largein a
systemwith many locks. Sincelock usageislikely to exhibit locality, one possible optimization
is to associate a small, fixed-size cache of scheduling state with each client (or alternatively,
with each lock).

The same basic technique used for locks can also be applied to other synchronization
resources, such as condition variables [LR80, Bir89, HIJT*93]. In the case of a condition
variable, acurrency is associated with the condition, and clientsthat are blocked waiting on the
condition fund the condition currency. Unlike alock, which has a single owner, there may be
several clients capable of signalling the condition. Any number of inheritance tickets can be
issued in the condition currency and used to fund these clients. Clients can be funded equally,
or preferentially using application-specific knowledge.

LA malicious or malfunctioning client can still hold alock indefinitely, but this is a general correctness issue
outside the scope of proportional-share resource management.
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6.1.2 Experiments

Figure 6-2 plots throughput performance results for lock scheduling with three different client
configurations. The data depicted is representative of simulation results over a wide range of
client ticket allocations and locking rates. Stride scheduling is used to allocate processor time,
combined with avariety of different lock scheduling techniques. IDEAL scheduling represents
perfect proportional -share behavior without locking. FIFO scheduling processes lock requests
in afirst-come, first-served order. STRIDE scheduling implements simple proportional-share
lock scheduling. INHERIT denotes stride lock scheduling with ticket inheritance. REPAY
refersto stride lock scheduling with both ticket inheritance and repayment.

Results for a simple ticket inversion scenario are graphed in Figure 6-2(a). Three clients
with a10:5: 1 ticket allocation compete for processor time. The 10-ticket and 1-ticket clients
also compete for a single lock by repeatedly executing a smple loop: acquire the lock, hold
the lock while computing for two quanta (the hold time), release the lock, and compute without
thelock for one quantum (the think time). FIFO lock scheduling demonstratesticket inversion,
producing a distorted 4.01:5.00: 1 throughput ratio since the 5-ticket client never waits for
the lock. The STRIDE lock scheduling results are identical to those for FIFO, since with
only two clients competing for the lock, the queue length never exceeds one. INHERIT
avoids ticket inversion, yielding a 7.26: 3.76 : 1 throughput ratio. However, the 1-ticket client
benefits disproportionately from ticket inheritance, decreasing the effective shares of the other
two clients. Finally, REPAY compensates for ticket inheritance, and achieves a reasonable
10.84:5.52: 1 throughput ratio.

Figure 6-2(b) plots the results for a similar experiment involving additional clients and
longer lock hold times. Fiveclientswithal0:5:5:2: 1ticket allocation competefor processor
time. The first (10-ticket), second (5-ticket), and fifth (1-ticket) clients also compete for
a single lock with a think time of one quantum and a hold time of five quanta. For this
experiment, FIFO lock scheduling results in a severe distortion of the specified throughput
rates, producing a 1.15:1.14:5.44:2.17: 1 ratio. The clients competing for the lock have
nearly identical throughput values, caused by the in-order processing of locking requests.
Moreover, the absolute throughput levelsfor the non-locking clients are more than twice those
specified as IDEAL, demonstrating ticket inversion. STRIDE lock scheduling also exhibits
inversion; the non-locking clients have absol ute throughput levels more than 50% higher than
intended. INHERIT avoids ticket inversion, achieving a5.91:4.90:3.69:1.48: 1 throughput
ratio. As expected, the distortion introduced by ticket inheritance favors the locking clients
with small ticket allocations. REPAY compensates for this bias, yielding a more reasonable
12.00:5.97:6.92: 2.77: 1 throughput ratio.
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Figure6-2: L ock Scheduling Perfor mance. Simulation resultsfor stride-based processor schedul -
ing combined with various lock scheduling techniques. IDEAL — perfect proportional-share behavior,
FIFO —first-come first-serve locking, STRIDE — stride-based locking, INHERIT — stride locking with
ticket inheritance, REPAY — stride locking with ticket inheritance and repayment. Each experiment
involves a single lock, and lasts for 10000 processor quanta. Each bar represents a single client, and
clients are arranged from left to right in order of decreasing ticket allocations.
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To examinethe behavior of thelock scheduling al gorithmswith more dynamic interleaving,
Figure 6-2(c) presents simulation results for clients with exponentially-distributed hold times.
Five clients with a 13:7:5:3:1 ticket allocation compete for processor time. All clients
except the 5-ticket client also compete for asingle lock. The think times for these clients are
1, 2, 1, and 5 quanta, respectively. The mean values for their exponentially-distributed hold
times are 2, 1, 5, and 1 quanta, respectively. The 4.04:2.30:6.44:3.39: 1 throughput ratio
achieved by FIFO lock scheduling bears little resemblance to the intended ratio. STRIDE
lock scheduling shows very little improvement over FIFO. INHERIT produces a substantially
better 10.96:5.79:4.79:5.26: 1 ratio, although it still introduces some undesirable distortion.
Finally, REPAY yields the most accurate results with a 12.58: 6.55:5.26: 2.46: 1 throughput
ratio.

The simulation results presented in this section demonstrate that the proportional-share
locking scheme with ticket inheritance and repayment is very effective at achieving specified
computation rates, despite contention for locks. However, thisapproachisnot perfect; dynamic
changesinresourcecontentionlimititsaccuracy. Also, theimplementation overhead associated
with ticket inheritance and repayment may limit itsuseful nessto coarse-grainedlocksor systems
that suffer from significant problems with ticket inversion.

6.2 Space-Shared Resources

The proportional -share mechanisms presented in Chapter 3 are designed to alocate indivisible
time-shared resources, such as an entire processor. This section introduces proportional-share
mechanismsthat are useful for allocating divisible space-shared resources. Examples of space-
shared resources include blocks in a filesystem buffer cache, resident virtual memory pages,
and processing nodes in a multiprocessor.

One obvious approach is to statically divide a resource into fixed regions with sizes that
are proportional to client ticket allocations. However, this approach is not suitable for dynamic
environments. In general, the number of clients competing for aresource will vary over time,
and the resource needs of each client will also change dynamically.

Dynamic space-sharing techniques are typically based on resource revocation. When one
client demands more of a space-shared resource, a replacement algorithm isinvoked to select a
victimclient that isforced to relinquish some of the spacethat it was previoudly alocated. This
section introduces two revocation-based algorithms: probabilistic inverse lottery scheduling,
and a deterministic minimum-funding revocation scheme.
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6.2.1 InverseLottery Scheduling

An inverse lottery is a variant of alottery that selectsa“loser” instead of a“winner”. Inverse
lottery scheduling is similar to normal lottery scheduling, except that inverse probabilities are
used. The basicideaisthat tickets resist selection; the moretickets that a client holds, the less
likely it isto be selected to lose aresource unit. Current resource consumption levelsmust also
be considered. Thus, the probability of selecting a client should depend on itsticket allocation
aswell asthe fraction of the resource that it has already been allocated.?

Basic M echanism

The inverse lottery mechanism is most easily explained in a bottom-up manner. Assume that
each resource unit is owned by some client, and that clients associate ticketswith each resource
unit that they own. A resource unit’sticket allocation is inverted to become a selection value:
a resource unit with ¢ tickets has an selection value of 1/¢. A lottery is conducted to select
a resource unit to be revoked, where the probability that a unit will be selected is directly
proportional to its selection value.

For example, consider a system containing three equal-size blocks of memory A, B, and
C, with the relative ticket alocation A: B:C = 10:5:1. Inverting each of these original
ticket amounts yields a relative selection value ratio of 15 : £ :1 = 1:2:10. When alottery is
conducted using these selection values, the probabilities of choosing blocks A, B, and C' are

1 2 10
137 13’and 137

respectively.

Aggregation

Since a rea system may contain many thousands of resource units, it would be extremely
inefficient to conduct inverse lotteries at the level of individual resource units. By aggregating
ticket allocationsover groups of resource units, the number of competing entitiescan be sharply
reduced. For example, aggregate ticket values can be computed for each client, and inverse
lotteries can be conducted among clients. A client selected by an inverse lottery could then
internally choose which of its resource units to surrender.

At first glance, it may seem that a ssimple ticket summation or averaging technique would
suffice for aggregating ticket amounts over multiple resource units. However, since inverse
lotteries use inverted ticket values, this intuition is incorrect. In general, an aggregate ticket
value T must be produced from two individual ticket valuest; and ¢, such that % = % + %

2| first introduced theideaof aninverselottery in [WW94]. Although the basic concept was presented correctly,
the expression given for computing inverted probabilities was incorrect for more than two clients.
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For example, let’sapply the aggregation rule to our earlier scenario involving three memory

blocks with aticket allocationof A: B:C =10:5:1. Wewill aggregate blocks B and C' into

BxC __ 5x1
B+C T 541

consists of two groups of blockswith aticket allocationof A : G = % : % After inverting these

This requirement directly? resultsin the aggregationrule T’ =

group GG, which has an equivalent ticket value of = g Thus, the resulting system

amounts, we have a selection value ratio of % : g =1:12. When alottery is conducted using

L
131

choosing GG is % When group G is selected, another inverse lottery is held to choose between
B and C. Sincetheir original ticket ratiois B: C' = 5:1, their selection value ratio is % ; % =
1:5. Thus, the probability of selecting B in the nested lottery is X ; the probability of selecting

Cis % . Calculating the overall selection probabilities across both |otteries, the probabilities of

L1 2 5 w12 _ 10
137 6 13’and6 X 13 = 13

these are the same values obtained in the original example without aggregation.

these selection values, the probability of choosing A is as before, and the probability of

choosing blocks A, B, and C' are X 12 = respectively. Note that

One powerful application of thistechniqueisto hierarchically aggregate alarge number of
resource units using atree structure. A tree can be constructed in which each leaf represents
an individual resource unit, and each internal node represents the aggregate ticket value for all
of the leavesthat it covers. Revocation is performed by tracing a path from the root to a leaf,
holding aninverselottery at each level to select which child to follow. Hierarchical aggregation
permits revocations and dynamic modifications to be performed efficiently in O(lgn) time,
where n isthe total number of resource units.

Another useful application of aggregation is to compute an equivalent ticket value for a
client that allocatesatotal of ¢ ticketsto n identical resource units. In thiscase, eachindividual
resource unit has an alocation of #/n tickets. Repeated application of the aggregation rule
yields an equivalent client ticket value of ¢/n?. Thus, a client’s resistance to being chosen
as a victim depends on both its ticket allocation and its current resource consumption. The
probability that a client will be selected increases quickly as it consumes more resources, but
decreases asit is allocated more tickets.

Experiments

A simple simulator was constructed to investigate the behavior of inverse lotteries. Given
an initial allocation of resource units to clients, together with current ticket allocations, how
does the overall allocation of resources evolve over time? Ideally, resource allocations should

31 originally arrived at this rule via an analogy to parallel resistors in electrical circuits. Resource units are
analogous to resistors in parallél, ticket allocations are analogous to resistor values, and selection probabilities
are analogous to current flows. Thus, the aggregation of tickets for inverse lotteries follows the same rule used to

aggregate parallel resistances in electrical circuits: R || Ry = g%
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Figure 6-3: Inverse Lottery Expansion Effect. Two clients, 2: 1 ticket ratio, 1: 2 alocation rate
ratio, starting with a5: 1 resource allocation. (a) No limits on client expansion. (b) Client expansionis
limited to its proportional share as defined by the current ticket ratio.

converge rapidly toward the proportional shares defined by client ticket ratios, regardlessof the
initial allocation.

Early simulations revealed an interesting problem. If one client issues allocation requests
at afaster rate than other clients, it can consume a disproportionate share of the resource. This
is because a client always has a non-zero probability of successfully obtaining a resource unit
from some other client. Figure 6-3(a) illustrates this problem for a pair of clientswitha2:1
ticket ratio, starting from aninitial 5: 1 resource allocation. The second client issues allocation
requests at twice the rate of the first, causing a substantial distortion in the resulting resource
allocation.

In order to eliminate this problem, an additional constraint was needed to limit client
expansion rates. Expansion is limited by explicitly preventing each client from using more
than its proportional share of the resource, as defined by the current ticket ratio. This rule
is only enforced when there are no idle resource units; clients are always free to consume
unused resources. Figure 6-3(b) demonstrates the effect of imposing such expansion limits.
The modified inverse lottery converges to the specified proportional shares, regardless of the
differencesin client allocation rates.

Figure 6-4 presents simulation data for two additional inverse lottery scheduling scenarios.
Figure 6-4(a) plots the evolution of resource allocations for three clientswith a3:2: 1 ticket
ratio, which all start with equal resource allocations. All clientsissue allocation requests at the
same rate, and their resource shares converge to the specified levels after approximately 650
allocations. Figure 6-4(b) plots resource allocationsover timefor two clientswitha2: 1 ticket
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Figure 6-4: Inverse Lottery Scheduling. (a) Threeclients, 3:2: 1 ticket ratio, identical allocation
rates, starting with equal resource allocations. (b) Two clients, 2: 1 ticket ratio, 1: 2 allocation rate ratio,
starting with reversed resource allocations.

ratio. The clientsstart with a1: 2 resource allocation, the reverse of the specified proportional
shares. The second client issues allocation requests at twice the rate of the first client. The
resource shares converge to the specified levels after atotal of about 500 all ocations.

6.2.2 Minimum-Funding Revocation

A deterministic alternative to the randomized selection of inverselotteriesis minimum-funding
revocation. Performing arevocation is very smple: aresource unit is revoked from the client
expending the fewest tickets per resource unit, compared with other clients. Unlike inverse
lotteries, no additional mechanism is needed to limit client expansion rates. Thisis because a
client that rapidly expands will aso quickly become the client with the minimum funding per
resource unit.

Asitsname suggests, minimum-funding revocation al so hasaclear economicinterpretation.
Thenumber of ticketsper resource unit can beviewed asaprice. Revocationreallocatesresource
units away from clients paying alower priceto clientswilling to pay a higher price.

Experiments

Figure 6-5 presents simulation data for minimum-funding revocation under the same sce-
nariosused to demonstrateinverselottery schedulingin Figure 6-4. Figure 6-5(a) plotsresource
allocations over time for three clients with a 3: 2: 1 ticket ratio, starting with equal resource
allocations. All clients issue allocation requests at the same rate, and their resource shares
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Figure 6-5: Minimum Funding Revocation. (a) Three clients, 3:2:1 ticket ratio, identical
alocation rates, starting with equal resource allocations. (b) Two clients, 2: 1 ticket ratio, 1: 2 allocation
rate ratio, starting with reversed resource allocations.

converge to the specified levels after approximately 300 allocations. Compared to inverse
lottery scheduling, convergence occurs more than twice as quickly. However, thereis an inter-
esting difference in behavior for the second client, which initially expandsits allocation at the
expense of the third client. Once the third client’s allocation has been reduced to near its target
level, the first client continues to expand by revoking the resource units temporarily gained
by the second client. If desired, this behavior could easily be avoided by imposing the same
expansion limitation described for inverse lotteries. Figure 6-5(b) shows resource allocations
over timefor two clientswitha2: 1ticketratio. Theclientsstart withal: 2 resourceallocation,
the reverse of the specified proportional shares. The second client issues allocation requests
at twice the rate of thefirst client. The resource shares converge to the specified levels after a
total of about 300 allocations, nearly twice as fast as under inverse lottery scheduling.

6.2.3 Comparison

Both the probabilistic inverse lottery and deterministic minimum-funding revocation mech-
anisms successfully achieve proportional-share allocations for space-shared resources. Both
techniques al so exhibit adaptive expansion and contraction of resource consumption as afunc-
tion of current ticket allocations. Thus, aclient with aconstant number of ticketswill be ableto
increase its resource consumption when overall contention falls, and its resource consumption
will decrease due to revocations when overall contention rises. For example, consider a client
that loses a resource unit due to a revocation. Since its resource consumption has decreased
without a change in its ticket allocation, this client would be less likely to be reselected by
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another inverselottery. Sinceitsticket to resourceunit ratio hasincreased, thisclient would also
be less likely to be reselected by the minimum-funding revocation scheme. Similar reasoning
appliesin the opposite direction for expansion.

Overall, minimum-funding revocation is generally preferableto inverselottery scheduling.
The minimum-funding algorithm is simpler, more efficient, and results in more rapid con-
vergence toward proportional shares. However, the minimum-funding approach does require
complete information about all clientsin order to identify the client with the minimum per-unit
funding. In contrast, an inverse |ottery may be more appropriate in situations where aggregate
metrics are accessible, but complete information is unavailable. This may be the case for
large-scale parallel or distributed systems in which information is physically distributed and
dynamically changing.

6.3 Disk Scheduling

Conventional disk scheduling algorithms are designed to maximize disk bandwidth utilization
without any consideration for the relative importance of individual requests. This section ex-
amines the problem of providing proportional-share control over disk scheduling while still
achieving high utilization. Such control would be particularly useful for disk-intensive work-
loads. Proportional-share disk scheduling is also desirable when proportional-share control
is provided for filesystem buffer cache space. Otherwise a client with a small buffer cache
allocation could potentially monopolize the disk due to a high buffer cache missrate.

6.3.1 Mechanisms

Most work on disk scheduling has focused on maximizing aggregate disk throughput. One
common algorithm is shortest-seek first (SSF), which always chooses the request with the
smallest seek distance from the current disk head position [Tan92]. A similar algorithm that
achieveseven better throughput by al so taking rotational latency into account is shortest access-
timefirst (STF) [SCO90, IW91]. Sincethesearegreedy policies, they alwaysprocesstherequest
with the minimum latency first. As aresult, some requests are treated very unfairly in terms
of response time. Worse yet, it is also possible for these policies to exhibit request starvation.
As main memory buffer sizes continue to increase, disk request queues are becoming larger,
exacerbating this problem [SCO90].

A widely-used algorithm that addresses the problem of fairnessis SCAN, also known asthe
elevator algorithm[CKR72, Tan92]. SCAN orders requests by cylinder number, and proceeds
in one direction, servicing al requests for a given cylinder before advancing to the next one.
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When there are no more outstanding requests in the same direction, SCAN simply reverses
direction. This algorithm is similar to SSF, and generally produces similar results [SCO90].
However, by scanning the entire disk from end to end, SCAN often achieves lower response
time variance that SSF. Nevertheless, SCAN can still exhibit high response times for requests
to cylinders near the extreme ends of the disk.

More recent attempts to optimize disk throughput while avoiding request starvation have
focused on aging techniques, which compute the merit of a request as a function of its true
service cost C' and the delay D that has elapsed since the request was issued. For example,
Seltzer, Chen, and Ousterhout recommend using a weighted shortest-time first (WSTF) algo-
rithm [SCO90]. WSTF weightsthe actual cost C' of adisk requestby (M — D) /M, where M is
a parameter that specifiesthe maximum acceptable delay. Thisalgorithm always processesthe
request with the minimum weighted cost. The throughput achieved by WSTF isusually within
afew percent of STF, and the maximum response times that it produces can be dramatically
smaller than those for STF.

Jacobson and Wilkes have proposed adifferent aging technique called aged shortest access-
time first (ASATF) [JW91]. ASATF calculates the merit of arequest as wD — C', where w
is aweighting parameter that is empirically derived by running simulations at high load. The
ASATF algorithm alwaysprocessestherequest with the maximum merit. Whenw = 0, ASATF
isidentical to STF; for large w, it approximates FCFS scheduling. For small w, ASATF attains
high throughput that approaches STF, while significantly decreasing maximum response times.

| attempted to achieve proportional-share control over disk bandwidth by experimenting
with a large variety of different disk scheduling schemes. Many approaches that were per-
fectly reasonable in terms of proportional sharing exhibited terrible performance in terms of
throughput. This is because there is a fundamental conflict between the goal of achieving
proportional -share all ocationsand the goal of maximizing overall disk throughput. A complete
solution to thistension is still an open problem.

Nevertheless, | did develop a simple funded delay cost (FDC) algorithm that roughly
approximates proportional-share scheduling for small ratios. This technique also achieves
reasonabl e disk throughput performancethat is generally better than SCAN and SSF, but lower
than STF. The FDC algorithm computes the merit of each request as F'D/C, where F' is the
funding associated with therequest, D isthedelay sinceit wasissued, and C' istheactual cost of
servicing the request. The algorithm processes the request with the maximum merit. The cost
adjustment is analogous to the compensation for nonuniform gquantum sizes in proportional-
share processor scheduling. Overall, FDC disk schedulingisessentially a cost-adjusted version
of Fong and Squillante’s time function scheduling (TFS) approach for processor timesharing,
in which process prioritiesincrease linearly with F'D [FS95].
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Figure 6-6: Relative Throughput Accuracy. The disk throughput ratio observed under the FDC
scheduling policy is plotted for each integral ticket alocation ratio between one and ten. The gray line
indicates the ideal where the two ratios areidentical. Each experiment processed atotal of ten thousand
reguests. (a) Queue containing 100 requests. (b) Queue containing 1000 requests.

6.3.2 Experiments

Quantitative experiments were conducted to test the proportional-share control offered by the
FDC disk scheduling algorithm, as well as its throughput and response-time characteristics
relative to other disk scheduling policies. To perform these experiments, | extended the disk
simulator that Seltzer et al. developed to evaluate WSTF, which simulates a Fujitsu M2361A
Eagle disk drive [SCO90]. This simulator maintains a fixed-size queue of requests to random
locationsthat are uniformly spread across the disk surface. As soon as one request is serviced,
another is immediately generated to take its place. To test the proportional-share behavior
of the FDC algorithm, ticket allocations are associated with every request. After arequest is
serviced, the new request that replacesit in the queue is given an identical ticket allocation, so
that the overall distribution of tickets to requests remains constant.

The first set of experiments, shown in Figure 6-6, tests the ability of the FDC algorithm
to control the relative service rates of requests. Each point plotted in Figure 6-6 indicates
the relative throughput rate that was observed for two classes of disk requests. Figure 6-6(a)
displays smulation results for servicing ten thousand requests with a queue length of 100,
for each integral allocation ratio between one and ten. Figure 6-6(b) presents ssimilar data for
a longer queue with 1000 requests. For small ticket ratios, the observed throughput ratio is
reasonably close to the allocated ratio. However, throughput accuracy diverges significantly
from the ideal for large ratios and queue lengths. For example, a 10: 1 allocation produces a
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Figure 6-7: Disk Scheduling Throughput. Throughput performance for various disk scheduling
techniques. FCFS—first-come first-serve, SCAN — elevator algorithm, SSF — shortest seek first, STF —
shortest time first, WSTF — weighted shortest time first (M = 30 sec.), FDC1 — funded delay cost with
al:1ratio, FDC10 — funded delay cost with a 10: 1 ratio. Each experiment processed a total of ten
thousand requests. (a) Queue containing 100 requests. (b) Queue containing 1000 requests.

6.61: 1 throughput ratio for a queue length of 100, and a 5.68: 1 ratio for a queue with 1000
requests.

Figure 6-7 shows the relative throughput performance of the various disk scheduling al-
gorithms. Figure 6-7(a) graphs throughput achieved for a queue length of 100 requests. The
best performance is displayed by WSTF, which marginally exceeds STF at 86.6 requests per
second. Theresultsfor FDC rangedfrom 64.9for al0: 1ratioto69.9foral: 1ratio. TheFDC
algorithm outperforms SCAN and SSF, but its throughput is still considerably lower than STF.
Figure 6-7(b) plots similar data for a queue length of 1000 requests. The larger queue length
provides more opportunities for optimizing disk head motion, improving throughput perfor-
mance for all of the disk scheduling algorithms except FCFS. For this set of experiments, STF
displays the best performance, marginally outperforming WSTF at 126.1 requests per second.
The results for FDC ranged from 97.5 for a 10: 1 ratio to 105.2 for al1: 1 ratio. As expected,
FDC achieves higher aggregate throughput than SCAN and SSF, but does not perform as well
as STF.

Another important performance metric is response time, plotted in Figure 6-8. Black bars
are used to present averageresponsetimes, and gray barsare used for maximum responsetimes.
Figure 6-8(a) graphs response times for a queue length of 100 requests, while Figure 6-8(b)
depicts the same metrics for a larger queue with 1000 requests. The maximum and average
response times for FCFS are nearly identical, since requests are processed in the order that
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Figure 6-8: Disk Scheduling Response Times. Average (black) and maximum (gray) response
times for various disk scheduling techniques. FCFS—first-comefirst-serve, SCAN —elevator algorithm,
SSF — shortest seek first, STF — shortest time first, WSTF — weighted shortest time first (M = 30 sec.),
FDC2 — funded delay cost with a 2 (left) : 1 (right) ratio, FDC5 — funded delay cost with a5 (left): 1
(right) ratio. Each experiment processed a total of ten thousand requests. (a) Queue containing 100
reguests. (b) Queue containing 1000 requests.

they areissued. Asexpected, the greedy SSF and STF algorithms exhibit low average response
times, but very high maximum responsetimes. The SCAN algorithmresultsin averageresponse
timesthat are comparableto SSF. SCAN produces maximum response timesthat are somewhat
lower than SSF for the smaller queue, but dlightly higher than SSF for the larger queue. In
contrast, WSTF achieves average response times that are comparable to STF, while limiting
maximum response times to a fraction of those for STF. Since the maximum delay parameter
M is set to 30 seconds for WSTF, the reduction in maximum response time is more dramatic
in Figure 6-8(b), which contains values as high as 75 seconds, while all of the response times
in Figure 6-8(a) are below 12 seconds.

The FDC algorithm produces different response time characteristics for different ticket
alocations. The bars labelled FDC2 correspond to a 2: 1 ticket allocation; FDC5 denotes
a5:1 ticket ratio. For both queue lengths, FDC achieves maximum response times for its
high-ticket requests that are significantly lower than those under any of the other scheduling
algorithms. The average response times for these requests are also lower than those under
any other policy, with larger differences for larger ticket allocations. As expected, |ow-ticket
requests have higher response times than high-ticket requests, since low-ticket requests are
serviced at a ower rate. Nevertheless, the maximum response times for low-ticket requests
arestill reasonably small when compared to most other policies. However, the averageresponse
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timesfor low-ticket requests are typically much higher than average response times under other
policies.

Overall, it is difficult to fully evaluate the performance of the FDC proportional-share
disk scheduling algorithm. FDC sacrifices some aggregate performance in order to give
preferential treatment to requests with high ticket allocations. In many cases, this tradeoff
is extremely beneficial. For example, if high-ticket requests are issued by important, time-
critical applications, then these applicationswill be accelerated by FDC. Similarly, low-ticket
applications that issue a large number of disk requests are prevented from monopolizing the
disk. A narrow focus on the performance of the disk subsystem ignoresimportant system-level
effects that would require a more extensive, integrated ssimulator to evaluate. This point is
elaborated by Ganger and Patt, who argue that a system-level model is necessary to evaluate
the overall impact of changes to 1/0 subsystems [GP93]. Thus, the ssmple examination of
proportional-share disk scheduling in this section is incomplete. Additional insights could
be gained by replacing the use of synthetic workloads with real applications, and expanding
the isolated disk drive simulation to include system-level simulations of all relevant resources.
Sincethe proposed FDC al gorithm achieves poor throughput accuracy for largeratios, additional
research is also needed to devel op improved proportional-share disk scheduling techniques.

6.4 Multiple Resources

The general resource management framework introduced in Chapter 2 provides a basic foun-
dation for managing multiple heterogeneous resources. However, the concurrent management
of diverse resources presents many new challenges. This section discusses several issues
associated with simultaneously managing multiple resources.

6.4.1 ResourceRights

One approach to managing multiple resourcesis to simply manage each resource as a separate,
independent entity. Resource-specific tickets that are valid only for particular resources can
be assigned to clients. For example, a client could be allocated CPU tickets that represent a
10% share of the processor and distinct RAM tickets that represent a 20% share of memory.
Although this approach is straightforward, it is aso cumbersome and inflexible. Constraining
the use of tickets to specific resources is inefficient, since application requirements typically
vary over time. Depending on current contention levels, clients could mutually benefit by
exchangingticketsfor different resources. For example, acompute-bound client could improve
its efficiency by trading excess RAM ticketsfor CPU tickets with a memory-bound client.
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An alternative approach is to allow any ticket to compete for any resource. The uniform
use of tickets to homogeneously represent rights for heterogeneous resources has several ad-
vantages. It eliminates the complexity of maintaining separate ticket types and potentially
redundant currency configurations. It also permits clients to use simple, quantitative compar-
isons when making decisions that involve dynamic tradeoffs between different resources. For
example, a client with knowledge of its own performance characteristics could numerically
compare the marginal cost of shifting tickets away from memory (reducing its share of RAM)
with the marginal benefit of shifting ticketsto the processor (increasing its CPU share).

6.4.2 Application Managers

Allowing each client to independently optimize its own performance by making dynamic
resource tradeoffs raises many interesting questions. For example, when does it make sense
to shift funding from one resource to another? How frequently should funding allocations be
reconsidered? Will dynamic resource management reach a stable equilibrium, or will it exhibit
undesirable oscillatory and chaotic behavior?

One way to abstract the evaluation of resource management options is to associate a
separate manager thread with each application. A manager thread could be alocated a small
fixed percentage (e.g., 1%) of an application’s overall funding, causing it to be periodically
scheduled whilelimiting its overall resource consumption. For space-shared resources, aclient
that has resource units revoked could be allowed to execute a short manager code fragment in
order to adjust funding levels.

A complete system would require an operating system structure that provides fine-grained,
application-level control over resource management, such as the flexible exokernel architecture
[EKO95]. Default managers should be supplied for most applicationsthat implement behavior
comparable to traditional operating system policies. Sophisticated applications should be
permitted to override these defaults by defining custom management strategies. The use of
managers provides a structured mechanism that encapsulates dynamic adjustments to resource
funding levels. However, it does not address the more fundamental questions of appropriate
funding strategies and dynamic stability.

6.4.3 System Dynamics

An integrated system that concurrently manages multiple resources is likely to resemble a
computational economy [MD88, HH95a, Wel95]. Tickets are similar to monetary income
streams that can be used to buy resources. The number of tickets competing for a resource
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can be interpreted as its price per unit time. Cost-benefit tradeoffs computed by clients are
anal ogous to decision-making procedures used by rational economic agents.

Formal modelsand simulations of computational agents competing for resources have been
shown to display a rich variety of dynamical behavior, including regimes characterized by
fixed points, oscillations, and chaos [HH88, KHH89, SHC95]. Market-based systems designed
to solve real resource allocation problems have also empirically demonstrated diverse system
dynamics. Most market-based algorithms proposed for computational economies use auctions
to determine prices, and have focused on allocating a single resource, such as processor time.
However, auctions can exhibit unexpectedly volatile price dynamics, even in simple single-
resource systems [WHH'92]. The proportional-share mechanisms introduced in this thesis
could provide amore stable and efficient substrate for pricing individual time-shared resources
in computational economies.

Oneof thefew existing approachesto themoregeneral problem of simultaneously allocating
multiple resources is Wellman's Walras system [Wel93, Wel95]. Walras is a market-oriented
programming environment based on the economic concept of general equilibrium [Var84].
Individual agents supply resource preferences in the form of demand curves to auctions that
iteratively compute a general equilibrium. Unfortunately, computing a general equilibrium
can entail substantial overhead. For example, a processor rental economy constructed using
Walras spent approximately ten times as long computing market equilibriaasit did executing
processes [Bog94].

Wellman also found it necessary to introduce temporal randomness to avoid undesirable
oscillations resulting from synchronized behavior [Wel93]. This suggests that randomized
techniques such as lottery scheduling may produce more stable behavior than deterministic
aternatives, since randomization tends to prevent persistent pathological states. Another tech-
nique for stabilizing pricesis the explicit introduction of speculators[SHCO95] or arbitrageurs
[Wel95] that monitor and exploit market inefficiencies, conducting profitable trades that tend
to promote equilibration. A substantial amount of additional research is clearly needed to ex-
plore both theoretical and practical issues associated with the dynamics of managing multiple
computational resources.
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Chapter 7

Related Wor k

This chapter discusses a wide variety of research related to computational resource manage-
ment. Relevant work is examined from diverse areas including operating systems, processor
scheduling, networking, and artificial intelligence. The following sections examine related
topics in priority scheduling, real-time scheduling, fair-share scheduling, proportional-share
scheduling, microeconomic resource management, and rate-based network flow control.

7.1 Priority Scheduling

Conventional operating systems employ numerical prioritiesfor scheduling processes [Dei 90,
Tan92]. A priority scheduler ssmply grantsthe processor to the processwith the highest priority.
Thus, priorities represent absol ute resource rights, since a process with higher priority is given
absol ute precedence over a process with lower priority.

The use of static priority values can lead to starvation — alow priority processthat isready
to execute may be blocked indefinitely by higher priority processes. This problem istypically
addressed by allowing prioritiesto vary dynamically. For example, priority aging isacommon
technique that gradually increases the priorities of processesthat have been waiting to execute
for alongtime[SPG92]. Another popular dynamic schemethat incorporatesameasureof recent
processor usage is decay-usage scheduling. Decay-usage schedulers maintain exponentially-
decayed averages of recent processor usage for each process. These decayed averages are used
to periodically adjust process priorities; higher priority isgivento processesthat have consumed
little processor time in the recent past. Variants of decay-usage scheduling are employed by
numerous academic and commercia Unix systems [Bac86, LMKQ89].

Unfortunately, several significant problems are associated with priority scheduling. One of
the most severe problemsis that dynamic priority schemes are typically ad-hoc and difficult to
understand. Even the popular decay-usage scheduling approach is poorly understood [Hel 93],
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despite its use in numerous operating systems. This is primarily due to the fact that resource
rights do not vary smoothly with priorities. Instead, resource rights are computed by highly
non-linear functions with parameters that even seasoned gurus find difficult to explain. As
aresult, it has been observed that many of the priority assignments expressed by users and
programmers are not very meaningful [Dei90].

The ability to set priorities provides absolute control over scheduling. However, priorities
arean extremely crude, inflexible mechanism for specifying resource management policies. An
extensive case study that examined thread usagein largeinteractivesystemsfound that priorities
were difficult to use and often interfered with other thread paradigms [HJT 793]. Moreover,
ad-hoc techniques that violated priority semantics were necessary to ensure that all threads
made reasonable progress. Another limitation of priorities is that they are not suitable for
specifying relative computation rates. Since the effects of differences or changesin priorities
are hard to predict, adjusting priorities and scheduler parameters to control service ratesis at
best a black art.

Priority mechanisms also lack the encapsulation and modul arity propertiesrequired for the
engineering of large software systems. For example, consider the problem of integrating several
independently-devel oped modules into a single concurrent system. In order to understand the
allocation of resourcesin the combined system, theinternal priority levelsused by each module
must be exposed. Such violations of modularity are necessary because inter-module priority
relationships are extremely difficult to compose or abstract.

In contrast to priority scheduling, proportional-share scheduling is easily understood in
terms of relative shares or percentages of aresource. Resource rights vary smoothly with ticket
assignments, making it simpleto reason about differencesor changesin allocations. Ticketsare
also inherently modular, since each ticket guaranteesitsowner theright to aworst-caseresource
consumption rate. The higher-level currency abstraction provides additional, powerful support
for specifying resource management policies. If desired, proportional-share mechanisms can
also be used to approximate static or dynamic priority schemes; an example emulation policy
is described in Section 2.5.1.

7.2 Real-Time Scheduling

In contrast to the ad-hoc treatment of priorities in operating systems, the use of priorities
has been rigorously analyzed in the domain of real-time systems [BW90]. Real-time systems
involve time-critical operations that impose absolute deadlines, such as those found in many
aerospace and military applications[Bur91]. Inthese systems, deadlines must be met to ensure
correctness and safety; a missed deadline may have dire consequences.
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One of the most widely used techniquesin real-time systemsis rate-monotonic scheduling,
in which priorities are statically assigned as a monotonic function of the rate of periodic
tasks [LL73, SKG91]. The importance of a task is not reflected in its priority; tasks with
shorter periods are simply assigned higher priorities. Bounds on total processor utilization
(ranging from 69% to nearly 100%, depending on various assumptions) ensure that rate-
monotonic scheduling will meet al task deadlines. Anocther popular technique is earliest
deadline scheduling [LL73], which aways schedules the task with the closest deadline first.
The earliest deadline approach permits high processor utilization, but has increased overhead
due to the use of dynamic priorities; the task with the nearest deadline varies over time.

In general, real-time schedul ersdepend upon very restrictive assumptions, including precise
static knowledge of task execution timesand prohibitionson task interactions. Extensionsto the
basi ¢ real-time scheduling techniques have been devel oped to relax some of these assumptions
[BW90, SRL90], but many inflexible constraints still remain. For example, strict limits are
always imposed on processor utilization, and even transient overloads are disallowed.

Like other priority schedulers, real-time schedulers also lack desirable encapsulation and
modularity properties, requiring low-level information such as task execution times to be
globally exposed. However, it is possible to layer higher-level abstractions on top of a real-
time scheduling substrate. Mercer, Savage, and Tokuda have developed a processor capacity
reserve abstraction [MST93, MST94] for measuring and controlling processor usage in a
microkernel system with an underlying real-time scheduler. Reserves can be passed across
protection boundaries during interprocess communication, with an effect similar to the use of
ticket transfers. While this approach workswell for many multimediaapplications, its reliance
on resource reservations and admission control is still fairly restrictive.

Real -time scheduling techni ques have been very successful for thelimited set of applications
that can satisfy their onerous restrictions. In contrast, the proportional-share model used by
lottery scheduling and stride scheduling is designed for more general-purpose environments.
Task allocations degrade gracefully in overload situations, and active tasks proportionally
benefit from extra resources when some allocations are not fully utilized. These properties
facilitate adaptive applications that can respond to changesin resource availability.

7.3 Fair-Share Scheduling

Fair-share schedulers allocate resources so that users get fair machine shares over long periods
of time[Lar75, Hen84, KL 88, Hel93]. Although the precise definition of fairnessvariesamong
different fair-share schedulers, resourcesare generally allocated to groupsor usersin proportion
to the number of shares that they have been assigned. These schedulerstypically assign shares
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directly to individual users or groups [Lar75, Hen84], although hierarchical share allocation
has also been implemented [KL88]. However, shares are not treated as first-class objects,
preventing the specification of more general resource management policies.

An important distinction between fair-share schedulers and proportional-share schedulers
is the time granularity at which they operate. As described in Chapter 2, proportional-share
schedul ers attempt to provide an instantaneousform of sharing in which the resource consump-
tion rates of active clients are proportional to their ticket allocations. In contrast, fair-share
schedulersattempt to provide atime-averaged form of sharing based on actual usage, measured
over long time intervals. For example, consider a ssimple scenario consisting of two clients,
A and B, with identical share allocations. Suppose that A is actively computing for severa
minutes, while B istemporarily inactive. When B becomes active, afair-share scheduler will
grant it alarger share of resourcesto helpit “catch up” to A. If B hasbeenidlefor along period
of time, it may temporarily monopolize system resources; additional scheduling constraintsare
sometimes imposed to reduce this effect. In contrast, a proportional-share scheduler will treat
A and B equally whenever they are both active, sinceitis“unfair” to penalize A for consuming
otherwise-idle resources.

Fair-share scheduler implementations are layered on top of conventional priority sched-
ulers, and dynamically adjust priority valuesto push actual usage closer to entitled shares. The
algorithms used by these systems are typically complex, requiring periodic usage monitoring,
complicated dynamic priority adjustments, and feedback |oopsto ensurefairnessonatimescale
of minutes. For example, the sophisticated Share system [KL88] requires at least six adminis-
trative parameters to be specified, including priority update intervals and decay rates. Priority
updates are usually performed infrequently to amortize their O(n..) cost over many scheduling
quanta, where n.. isthe number of clients. An alternative fair-share implementation technique
also existsfor systems that employ decay-usage scheduling, based on the manipulation of base
priorities[Hel93]. While this scheme avoidsthe addition of feedback loopsintroduced by other
fair-share schedulers, it assumes a fixed workload of long-running, compute-bound processes
to ensure steady-state fairness at a time scale of minutes.

Fair-share schedulers have been used in real systems to provide reasonable fairness and
predictable response times for large user communities on Unix timesharing systems [Hen84,
KL88]. However, their heavyweight algorithms are inappropriate for fine-grained thread
scheduling over short time intervals, and administrative tuning is required to achieve desired
fairness characteristics. It isinteresting to note that a ssimple variant of stride scheduling could
also be used to implement various notions of time-averaged fairness. For example, clients
could be given credit for some or all of the passes that elapse while they are inactive, providing
aform of sharing that is averaged over longer time periods.
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7.4 Proportional-Share Scheduling

A number of deterministic proportional-share scheduling mechanisms have recently been pro-
posed [BGPO5, FS95, Mah95, SAW95]. Severa of these techniques [FS95, Mah95, SAW95]
have been explicitly compared to lottery scheduling [WW94], although none of them have
demonstrated support for the flexible resource management abstractions introduced with lot-
tery scheduling.

Stoica and Abdel-Wahab have devised an interesting scheduler using a deterministic gen-
erator that employs a bit-reversed counter in place of the random number generator used by
lottery scheduling [SAW95]. Their algorithm resultsin an absolute error for throughput that is
O(lgn,), where n, is the number of allocations. Allocations can be performed efficiently in
O(lgn.) time using a tree-based data structure, where n.. is the number of clients. Dynamic
modificationsto the set of active clients or their allocationsrequire executing arelatively com-
plex “restart” operationwith O(n..) time complexity, and no support is provided for nonuniform
gquanta. However, Stoica recently stated that their algorithm has been improved to efficiently
support dynamic operations in O(lgn.) time, and that it has also been extended to handle
fractional quanta[Sto95].

Maheshwari has devel oped a deterministic charge-based proportional-share schedul er that
isloosely based on an analogy to digitized line drawing [Mah95]. This scheme hasamaximum
relative throughput error of one quantum, but can exhibit O(n.) absolute error, where n, is
the number of clients. Although efficient in many cases, allocation has a worst-case O(n.)
time complexity. Fractional quanta are supported, but other dynamic modifications require
executing a“refund” operation with O(n.) time complexity.

Fong and Squillante have introduced a general scheduling approach called time-function
scheduling (TFS) [FS95]. TFS is intended to provide differential treatment of job classes,
where specific throughput ratios are specified across classes, while jobs within each class are
scheduled in a FCFS manner. Time functions are used to compute dynamic job prioritiesas a
function of the time each job has spent waiting since it was placed on the run queue. Linear
functionsresult in proportional sharing: ajob’svalueis equal to its waiting time multipled by
its job-class dope, plus a job-class constant. An alocation is performed by selecting the job
with the maximum time-function value. A naiveimplementation would be very expensive, but
sincejobsare grouped into classes, an allocation can be performed in O(n) time, wheren isthe
number of distinct classes. If time-function values are updated infrequently compared to the
scheduling quantum, then a priority queue can be used to reduce the allocation cost to O (1g n),
with an O(nlgn) cost to rebuild the queue after each update.
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When Fong and Squillante compared TFS to lottery scheduling, they found that although
throughput accuracy was comparable, the waiting time variance of low-throughput tasks was
often several ordersof magnitudelarger under lottery scheduling. Thisobservationisconsistent
with the simulation results presented in Section 4.2 involving response time. TFS aso offers
the potential to specify performance goals that are more general than proportional sharing.
However, when proportional sharing is the goal, stride scheduling has advantages in terms of
efficiency and accuracy.

Baruah, Gehrke, and Plaxton recently introduced an agorithm for scheduling n,. periodic
tasks on m resources [BGP95]. Their algorithm implements an extremely strong guaran-
tee — the absolute error for any client never exceeds one quantum, independent of n.. No
analysis was presented regarding response-time variability. Allocations are performed in
O(min{mlgn.,n.}) time, which reduces to O(lgn..) time for a single resource. However,
a complex O(n.) pre-processing stage is required, and the algorithm does not support frac-
tional or nonuniform quanta. Since this algorithm is not designed to support dynamic client
participation or changes to allocations, each dynamic operation would require the expensive
pre-processing phase to be repeated. Thus, while this technique provides a tighter bound on
absolute error than stride-based scheduling for fixed workloads, it isnot well-suited to processor
scheduling in more dynamic environments.

All of the deterministic mechanisms discussed in this section achieve better throughput
accuracy than lottery scheduling. However, only the algorithm by Baruah et al. [BGP95]
provides better bounds on throughput error than either stride scheduling or hierarchical stride
scheduling. In general, these scheduling techniques also require expensive operations to
transform client state in response to dynamic changes. Thus, they are less attractive than
stride-based scheduling for supporting dynamic or distributed environments. Since dynamic
operations are expensive, these techniques are incapable of providing efficient support for the
general resource management framework presented in Chapter 2.

7.5 Microeconomic Resource M anagement

Microeconomic schedulers are based on metaphors to resource allocation in real economic
systems [MD88, HH95a, Wel 95]. Money encapsul ates resource rights, and a price mechanism
is used to allocate resources. Most microeconomic schedulers[DM88, MD88, FY N88, Fer89,
Wal89, WHH™ 92, Wel 93, Bog94] employ auctions to determine prices and allocate resources
among clientsthat bid monetary funds. Both the escalator algorithm proposed for uniprocessor
scheduling [DM88] and the distributed Spawn system [WHH™92] rely upon auctionsin which
bidders increase their bids linearly over time. Since auction dynamics can be unexpectedly
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volatile, auction-based approaches sometimes fail to achieve resource allocations that are
proportional to client funding. The overhead of bidding also limits the applicability of auctions
to relatively coarse-grained tasks.

Other market-based approaches that do not rely upon auctions have also been applied to
managing processor and memory resources. Ellison modified the standard TENEX timesharing
scheduler to use a market-based model for allocating both processing time and core memory
[ElI75]. This scheduler is unique in its ability to manage multiple critical resourcesin areal
operating system. Users are allocated income streams that are spent to purchase CPU time and
memory occupancy. Instead of an auction mechanism, new prices are periodically computed
to be proportional to both current prices and resource utilization, and are smoothed using
an exponential-decay digital filter. It was reported that this system worked well in practice,
although several scheduling parameters were introduced and tuned by system programmers.

Harty and Cheriton have developed a market-based approach for memory allocation to
allow memory-intensive applicationsto optimize their memory consumption in adecentralized
manner [HC92]. This scheme charges applications for both memory leases and 1/0 capacity,
allowing application-specific tradeoffs to be made. However, unlike a true market, prices are
not permitted to vary with demand, and ancillary parameters are introduced to restrict resource
consumption [CH93].

Lottery scheduling and stride scheduling are compatible with a market-based resource
management philosophy. The mechanisms introduced for proportional sharing provide a
convenient substrate for pricing individual time-shared resources in a computational economy.
For example, tickets are analogous to monetary income streams, and the number of tickets
competing for a resource can be viewed as its price. The currency abstraction for flexible
resource management is also loosely borrowed from economics.

7.6 Rate-Based Network Flow Control

The core stride scheduling algorithm is very similar to Zhang's virtual clock algorithm for
packet-switched networks [Zha9l]. In this scheme, a network switch orders packets to be
forwarded through outgoing links. Every packet belongs to a client data stream, and each
stream has an associated bandwidth reservation. A virtual clock is assigned to each stream, and
each of its packets is stamped with its current virtual time upon arrival. With each arrival, the
virtual clock advances by a virtual tick that is inversely proportional to the stream’s reserved
datarate. In the stride-oriented terminology used in thisthesis, a virtual tick isanalogousto a
stride, and avirtual clock is analogousto a passvalue.
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Thevirtua clock algorithmisclosely related to theweighted fair queueing (WFQ) algorithm
developed by Demers, Keshav, and Shenker [DKS90], and Parekh and Gallager’s equivalent
packet-by-packet generalized processor sharing (PGPS) algorithm [PG93]. One differencethat
distinguishes WFQ and PGPS from the virtual clock algorithmisthat they effectively maintain
a global virtual clock. Arriving packets are stamped with their stream’s virtual tick plus the
maximum of their stream’svirtual clock and the global virtual clock. Without this modification,
an inactive stream can later monopolize alink asits virtual clock catches up to those of active
streams; such behavior is possible under the virtual clock algorithm [PG93].

Theuse of aglobal_passvariablein the stride scheduling algorithm presented in Figure 3-13
isbased on the global virtual clock employed by WFQ/PGPS, which follows an update rule that
produces a smoothly varying global virtual time. Before I became aware of the WFQ/PGPS
work, a simpler global_pass update rule was used: global_pass was set to the pass value of
the client that currently owns the resource. To see the difference between these approaches,
consider the set of minimum pass values over time in Figure 3-12. Although the average pass
valueincrease per quantumis 1, the actual increases occur in non-uniform steps. The smoother
WFQ/PGPS virtual time rule was adopted to improve the accuracy of pass updates associated
with dynamic modifications.

To the best of my knowledge, stride scheduling is the first cross-application of rate-based
network flow control algorithms to scheduling other resources such as processor time. New
techniques were required to support dynamic changes and higher-level abstractions such as
ticket transfers and currencies. Hierarchical stride scheduling is a novel recursive application
of the basic technique. Compared to prior schemes, hierarchical stride scheduling can improve
throughput accuracy and reduce response time variability.

A completely different technique from the domain of high-speed network traffic manage-
ment is similar to randomized lottery scheduling. In order to allocate bandwidth fairly among
datagram traffic flows, a statistical matching technique has been proposed for switch schedul -
ing in the AN2 network [AOST93]. In this ATM-like network, bandwidth guarantees are
normally achieved using a deterministic parallel iterative matching technique that consults a
fixed schedule for forwarding packets. However, dynamic changes to bandwidth allocations
require an expensive recomputation of this schedule. Statistical matching is a generalization
of paralel iterative matching that systematically exploits randomness to efficiently support
frequent changes in bandwidth allocations.
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Chapter 8
Conclusions

This chapter summarizes key results for the resource management techniques presented in this
thesis. A comparison of the core proportional-share mechanisms is included, along with rec-
ommendations for the appropriate use of each algorithm. In closing, future research directions
are discussed, and specific opportunities for future exploration are highlighted.

8.1 Summary

This thesis explores resource management abstractions and mechanisms for general-purpose
computer systems. A flexible framework is proposed to decentralize resource management
decisions by allowing users and applications to specify their own policies. Dynamic control
over resource consumption rates is achieved by introducing a pair of simple abstractions —
ticketsand currencies. Tickets encapsulate resource rights, and currencies support the modul ar
composition and insulation of concurrent resource management policies.

Several proportional -share scheduling mechani smscapabl e of implementing thisframework
are also introduced, including both randomized and deterministic algorithms. All of the
proposed mechanismsrequireonly O(lg n.) timeto allocate aresource, wheren, isthe number
of clients competing for the resource. Each algorithm can also efficiently perform a dynamic
operationin O(lgn.) time. Dynamic operationsinclude changesto the set of actively competing
clients and modificationsto relative allocations. Aside from implementation complexity, these
mechanisms primarily differ in the throughput accuracy and response-time variability that they
achieve for clients. Throughput accuracy is quantified by absolute error, measured as the
difference between the specified and actual number of resource quanta that a client receives
during a series of allocations.
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Lottery scheduling is a simple randomized scheduling algorithm. Lottery scheduling triv-
ialy supports complex, dynamic environments since it is effectively stateless. The use of
randomness al so prevents malicious clientsfrom “gaming” the system to obtain an unfair share
of resources. However, theinherent use of randomnessresultsin poor throughput accuracy over
short allocation intervals, producing an expected O(/n,) absolute error after n,, alocations.
Lottery scheduling also exhibits high response-time variability for low-throughput clients. An
extension of |ottery scheduling that selects multiple winners per lottery substantially improves
accuracy and lowersresponse-time variability for many workloads. Neverthel ess, multi-winner
lotteries offer little improvement over ordinary lottery scheduling for low-throughput clients.

Sride scheduling is a deterministic scheduling algorithm that cross-applies and extends
elements of rate-based flow-control mechanisms designed for networks. Compared to |ottery
scheduling, this approach requires more complicated support for dynamic environments. How-
ever, stride scheduling achieves significantly improved accuracy over relative throughput rates,
with significantly lower response-time variability. The absolute error for stride scheduling is
O(n.), which isindependent of the number of allocations.

Hierarchical stride schedulingisanovel recursiveapplication of the basi c stride scheduling
technique, and providesatighter O(lg n..) bound on absoluteerror. Compared to ordinary stride
scheduling, thishierarchical approach significantly reducesresponse-timevariability for heavily
skewed ticket distributions, but can actually increase variability for other distributions. In
practice, hierarchical stride schedulingistypically better intermsof absoluteerror, butisusually
worse in terms of response-time variability. In general, the goals of minimizing throughput
error and minimizing response-time variability ultimately conflict for most allocation ratios.

Overal, stride scheduling is the best proportional-share mechanism for most systems.
Empirical results demonstrate that typical absolute error levelsare much smaller than the worst-
case O(n..) bound, and that response-time variability is usually very low. Stride scheduling
exhibitsits worst-case behavior in systems with skewed ticket allocations, such as a geometric
distribution of ticketsto clients. Hierarchical stride scheduling isamore appropriate choice for
such systems, since it reduces both throughput error and response-time variance. Hierarchical
stride scheduling is also preferred over ordinary stride scheduling when throughput error isthe
primary concern, and response-time variability is alessimportant consideration.

The randomized |ottery-based scheduling algorithms aso have an important niche. First,
lottery scheduling is extremely simple and easily understood, requiring no special operations
to support dynamic environments. Every client isgiven afair chance of winning each resource
allocation based on its ticket assignment, yet allocations are granted in an unpredictable order.
This randomization actively thwarts attacks by malicious clients attempting to “game” the
system and unfairly exploit resources. Dynamic operations for stride scheduling are also
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designed to avoid exploitation by malicious clients. However, it is nearly impossible to
guarantee that no loopholes exist. Randomized scheduling may therefore be the best choice if
abuse by maliciousclientsisareal concern, asmight be the case for some commercial services.

Lottery scheduling also has advantages for proportional-share scheduling in large-scale
parallel or distributed systems. A tree-based distributed | ottery schedul er makeslocal decisions
based on compact, aggregate ticket values that can be communicated efficiently. In contrast,
stride scheduling cannot rely upon aggregate metrics, and distributed priority queue updates
are needed for each allocation. Moreover, randomized techniques may exhibit better dynamic
stability than deterministic alternativesin systemsthat concurrently manage multipleresources.

Prototype process schedulers were implemented for the Mach and Linux operating system
kernels, in addition to extensive ssimulation studies. These prototypes provide a testbed for
gaining practical experience with the proposed framework and mechanisms in real systems.
Experiments using a wide range of applications demonstrate flexible, responsive control over
synthetic benchmarks, scientific computations, client-server interactions, and multimediaappli-
cations. Both lottery scheduling and stride scheduling successfully achieve proportional-share
control over computation rates. As expected, the deterministic stride scheduler prototype is
significantly more accurate than the randomized lottery scheduler prototype.

This thesis also proposes and analyzes several new resource-specific techniques for pro-
portional sharing. Ticket inheritance extends the basic lottery and stride algorithms to ensure
proportional-share control over computation rates despite contention for synchronization re-
sources. Randomized inverse lottery scheduling and deterministic minimum-funding revoca-
tion techniques implement dynamic, revocation-based proportional sharing for space-shared
resources such as memory. A funded delay cost disk scheduling algorithm is also proposed
for managing disk 1/0 bandwidth. These resource-specific algorithms provide the fundamental
building blocks for integrated proportional-share management of multiple resources.

8.2 FutureDirections

This thesis opens up several opportunitiesfor future work. As computers become increasingly
ubiquitous, new demands are being placed upon software to flexibly and efficiently manage
resources in diverse environments. One useful research direction is the application and ex-
tension of the proposed proportional -share mechanisms to manage resources not considered
in thisthesis. For example, lottery scheduling has recently been used to guarantee minimum
serviceratesfor scarce network bandwidth in mobile environments [HH95b]. Power isanother
critical resourcethat can be affected by scheduling in mobile systems[WWDS94]. It would be
interesting to examine proportional-share techniques for managing energy consumption.
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Another promising research areaistheintegrated use of proportional-share scheduling tech-
niquesto simultaneously manageall critical system resources. Although the general framework
introduced in thisthesis provides a solid foundation for integrated resource management, there
are still several unresolved issues. |deally, applications could independently optimize their
own performance by making dynamic tradeoffs between the consumption of processor time,
memory, and other resources. Uniform use of ticketsprovidesaconsi stent way to quantitatively
evaluate such tradeoffs, but programmers need additional tools to facilitate the construction of
more adaptive software. An integrated system is likely to resemble a computational economy,
and may exhibit a broad spectrum of diverse behaviors. In some respects, thisis at odds with
the simple, easily-understood model offered by proportional-share scheduling.

A final areathat deservesconsiderableattentionistheintersection of computational resource
management and human-computer interaction. Many multithreaded, interactive applications
cansignificantly benefit from theresearch presented inthisthesis. Flexible control over resource
management allows interactive applications to improve responsiveness and user productivity
by focusing resources on tasks that are currently important [DJ90, TL93]. In addition, the
framework proposed in thisthesis supports adaptive applicationsthat can dynamically respond
to changes in resource availability. Appropriate graphical interface elements are also needed
to facilitate interactive, user-level resource management. Direct manipulation of visual repre-
sentations for tickets and currencies could enhance the usability of the proposed framework.
Automated techniquesto track user attention would aso be desirable.
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