Resource Management for
Virtualized Systems

Carl Waldspurger (SB Sm ‘89 PhD ’95)
VMware R&D

Virtualized Resource Management

* Physical resources
— Actual “host” hardware
— Processors, memory, |/O devices, etc.

e Virtual resources
— Virtual “guest” hardware abstractions
— Processors, memory, |/O devices, etc.
e Resource management
— Map virtual resources onto physical resources

— Multiplex physical hardware across VMs
— Manage contention based on admin policies

Resource Management Goals

* Performance isolation
— Prevent VMs from monopolizing resources
— Guarantee predictable service rates
* Efficient utilization
— Exploit undercommitted resources
— Overcommit with graceful degradation
e Support flexible policies

— Meet absolute service-level agreements
— Control relative importance of VMs

Talk Overview

Resource controls
Processor scheduling
Memory management
NUMA scheduling
Distributed systems

Summary

Resource Controls

e Useful features
— Express absolute service rates
— Express relative importance
— Grouping for isolation or sharing

* Challenges
— Simple enough for novices
— Powerful enough for experts

— Physical resource consumption vs.
application-level metrics

— Scaling from single host to cloud

VMware Basic Controls

e Shares
— Specify relative importance
— Entitlement directly proportional to shares
— Abstract relative units, only ratios matter
* Reservation
— Minimum guarantee, even when system overloaded
— Concrete absolute units (MHz, MB)
— Admission control: sum of reservations < capacity
* Limit
— Upper bound on consumption, even if underloaded
— Concrete absolute units (MHz, MB)

Shares Examples

Add VIM, overcommit
) Graceful degradation
Remove VM
‘ Exploit extra resources

Change shares for VM
Dynamic reallocation

Reservation Example

e Total capacity
— 1800 MHz reserved
— 1200 MHz available

T e Admission control
— 2 VMs try to power on
— Each reserves 900 MHz

— Unable to admit both
* VM1 powers on
e VM2 not admitted

VM

Limit Example

e Current utilization
— 1800 MHz active
— 1200 MHz idle

e Start CPU-bound VM
— 600 MHz limit
— Execution throttled

* New utilization
— 2400 MHz active
— 600 MHz idle

— VM prevented from
using idle resources

VMware Resource Pools

* Motivation
— Allocate aggregate resources for sets of VMs
— Isolation between pools, sharing within pools
— Flexible hierarchical organization
— Access control and delegation

 What is a resource pool?
— Named object with permissions

— Reservation, limit, and shares for each resource

— Parent pool, child pools, VMs

K-

Resource Pools Example

VM2

Admin manages users

Policy: Alice’s share is
50% more than Bob’s

Users manage own VMs
Not shown: resvs, limits
VM allocations:

300/‘
40%

30%

K-

Example: Bob Adds VM

VM2

Same policy
Pools isolate users

Alice still gets 50%
more than Bob

VM allocations:

30% 'I 13%
' 27%

30%

Resource Controls: Future Directions

* Application-level metrics
— Users think in terms of transaction rates, response times
— Requires detailed app-specific knowledge and monitoring
— Can layer on top of basic physical resource controls

* Other controls?

— Real-time latency guarantees

— Price-based mechanisms and multi-resource tradeoffs
* Emerging DMTF standard

— Reservation, limit, “weight” + resource pools
— Authors from VMware, Microsoft, IBM, Citrix, etc.

Talk Overview

Resource controls
Processor scheduling
Memory management
NUMA scheduling
Distributed systems

Summary

Processor Scheduling

e Useful features
— Accurate rate-based control
— Support both UP and SMP VMs
— Exploit multi-core, multi-threaded CPUs
— Grouping mechanism

e Challenges
— Efficient scheduling of SMP VMs
— VM load balancing, interrupt balancing
— Cores/threads may share cache, functional units
— Lack of control over parchitectural fairness
— Proper accounting for interrupt-processing time

VMware Processor Scheduling

e Scheduling algorithms
— Rate-based controls
— Hierarchical resource pools
— Inter-processor load balancing
— Accurate accounting

e Multi-processor VM support
— lllusion of dedicated multi-processor
— Near-synchronous co-scheduling of VCPUs
— Support hot-add VCPUs

 Modern processor support
— Multi-core sockets with shared caches
— Simultaneous multi-threading (SMT)

Proportional-Share Scheduling

* Simplified virtual-time algorithm
— Virtual time = usage / shares
— Schedule VM with smallest virtual time

 Example: 3 VMs A, B, C with 3 : 2 : 1 share ratio
HEEEEET EEN e
2 4 4 6 8 8 8 10 10

B 3

A

[oy)

6 6

(o))

9 9 9 12

C 6 6 6 6 6 6 12 12 12

Hierarchical Scheduling

Admin Motivation
/ \ — Enforce fairness at each
resource pool
time = 2000 ,
L vtime = 2100 — Unused resources flow
to closest relatives
Alice Bob * Approach
/ \ / \ — Maintain virtual time at
each node
vtime = 2200 vtime = 1800 vtime=2100 vtime = 2200 — Recursively choose node
with smallest virtual time
VM1 VM2 VM3 VM4
[3 7

-~ -
hall R

flow unused time

Inter-Processor Load Balancing

* Motivation
— Utilize multiple processors efficiently
— Enforce global fairness
— Amortize context-switch costs
— Preserve cache affinity

e Approach
— Per-processor dispatch and run queues
— Scan remote queues periodically for fairness
— Pull whenever a physical CPU becomes idle
— Push whenever a virtual CPU wakes up
— Consider cache affinity cost-benefit

Co-Scheduling SMP VMs

* Motivation
— Maintain illusion of dedicated multiprocessor
— Correctness: avoid guest BSODs / panics
— Performance: consider guest OS spin locks
 VMware Approach
— Limit “skew” between progress of virtual CPUs
— |Idle VCPUs treated as if running

— Deschedule VCPUs that are too far ahead
— Schedule VCPUs that are behind

e Alternative: Para-virtualization

Charging and Accounting

e Resource usage accounting
— Pre-requisite for enforcing scheduling policies
— Charge VM for consumption
— Also charge enclosing resource pools
— Adjust accounting for SMT systems

* System time accounting
— Time spent handling interrupts, BHs, system threads
— Don’t penalize VM that happened to be running
— Instead charge VM on whose behalf work performed
— Based on statistical sampling to reduce overhead

Processor Scheduling: Future Directions

* Shared cache management

— Explicit cost-benefit tradeoffs for migrations
e.g. based on cache miss-rate curves (MRCs)

— Compensate VMs for co-runner interference
— Hardware cache QoS techniques

* Power management
— Exploit frequency and voltage scaling (P-states)

— Exploit low-power, high-latency halt states (C-states)
— Without compromising accounting and rate guarantees

Talk Overview

Resource controls
Processor scheduling
Memory management
NUMA scheduling
Distributed systems

Summary

Memory Management

e Useful features
— Efficient memory overcommitment
— Accurate resource controls
— Exploit deduplication opportunities
— Leverage hardware capabilities

* Challenges
— Reflecting both VM importance and working-set

— Best data to guide decisions private to guest OS
— Guest and meta-level policies may clash

Memory Virtualization

 Extra level of indirection
— Virtual — “Physical”

VPN Guest maps VPN to PPN
using primary page tables
guest — “Physical” — Machine
shadow VIMIM maps PPN to MPN

page table ¢ Shadow page table
— Traditional VMM approach
g_irBdware — Composite of two mappings

— For ordinary memory references,
hardware maps VPN to MPN

 Nested page table hardware
M PN — Recent AMD RVI, Intel EPT
— VMM manages PPN-to-MPN table
— No need for software shadows

PPN

Reclaiming Memory

* Required for memory overcommitment
— Increase consolidation ratio, incredibly valuable
— Not supported by most hypervisors
— Many VMware innovations [Waldspurger OSDI '02]
* Traditional: add transparent swap layer
— Requires meta-level page replacement decisions
— Best data to guide decisions known only by guest
— Guest and meta-level policies may clash
— Example: “double paging” anomaly
* Alternative: implicit cooperation
— Coax guest into doing page replacement
— Avoid meta-level policy decisions

Ballooning

inflate balloon
(+ pressure)

Guest OS

v
AN

deflate balloon
(— pressure)

Guest OS

may page out
to virtual disk

guest OS manages memory
implicit cooperation

Guest OS

may page in
from virtual disk

Page Sharing

* Motivation
— Multiple VMs running same OS, apps
— Deduplicate redundant copies of code, data, zeros

* Transparent page sharing

— Map multiple PPNs to single MPN copy-on-write

— Pioneered by Disco [Bugnion et al. SOSP ’97],
but required guest OS hooks

 VMware content-based sharing
— General-purpose, no guest OS changes
— Background activity saves memory over time

Page Sharing: Scan Candidate PPN

011010
110101 hash page contents - ...2bd806af
010111 —T
| 101100
VM 1 VM 2 VM 3
\ hint frame
Mifnhé?e I I Hash: ...06af | ™
H VM: 3
[PPN: 4318 | .
MPN: 123b ’ Paatﬁg

Page Sharing: Successful Match

VM 1 VM 2 VM 3
\ ‘\) shared frame
Machine ",
Memory Hash: ...06af | ™.
Refs: 2 |
MPN: 123b i

table

Memory Reclamation: Future Directions

* Memory compression

— Old idea: compression cache [Douglis USENIX ’93],
Connectix RAMDoubler (MacOS mid-90s)

— Recent: Difference Engine [Gupta et al. OSDI ’08],
future VMware ESX release

e Sub-page deduplication
 Emerging memory technologies
— Swapping to SSD devices

— Leveraging phase-change memory

Memory Allocation Policy

* Traditional approach

— Optimize aggregate system-wide metric

— Problem: no QoS guarantees, VM importance varies
* Pure share-based approach

— Revoke from VM with min shares-per-page ratio

— Problem: ignores usage, unproductive hoarding
* Desired behavior

— VM gets full share when actively using memory
— VM may lose pages when working-set shrinks

Reclaiming Idle Memory

 Tax on idle memory
— Charge more for idle page than active page
— Idle-adjusted shares-per-page ratio

* Tax rate

— Explicit administrative parameter

— 0% = “plutocracy” ... 100% = “socialism”
* High default rate

— Reclaim most idle memory

— Some buffer against rapid working-set increases

Memory (MB)

ldle Memory Tax: 0%

300

250

200 - |-
150 |

100 | "

50

10 20 30 40 50 60
Time (min)

Experiment

— 2 VMs, 256 MB, same shares
— VM1: Windows boot+idle

— VM2: Linux boot+dbench

— Solid: usage, Dotted: active

Change tax rate
Before: no tax

— VM1 idle, VM2 active
— Get same allocation

Memory (MB)

ldle Memory Tax: 75%

300

250

200 - |-
150 1 |

100 |

50 -

10

20 30
Time (min)

40

50

60

Experiment

— 2 VMs, 256 MB, same shares
— VM1: Windows boot+idle

— VM2: Linux boot+dbench

— Solid: usage, Dotted: active

Change tax rate

After: high tax
— Redistributed VM1 — VM2
— VM1 reduces to min size

— VM2 throughput improves
more than 30%

Allocation Policy: Future Directions

Memory performance estimates
— Estimate effect of changing allocation
— Miss-rate curve (MRC) construction

Improved coordination of mechanisms

— Ballooning, compression, SSD, swapping
Leverage guest hot-add/remove
Large page allocation efficiency and fairness

Talk Overview

Resource controls
Processor scheduling
Memory management
NUMA scheduling
Distributed systems

Summary

NUMA Scheduling

* NUMA platforms
— Non-uniform memory access
— Node = processors + local memory + cache
— Examples: IBM x-Series, AMD Opteron, Intel Nehalem
e Useful features
— Automatically map VMs to NUMA nodes
— Dynamic rebalancing
* Challenges
— Tension between memory locality and load balance
— Lack of detailed counters on commodity hardware

VMware NUMA Scheduling

e Periodic rebalancing
— Compute VM entitlements, memory locality
— Assign “home” node for each VM
— Migrate VMs and pages across nodes
* VM migration
— Move all VCPUs and threads associated with VM
— Migrate to balance load, improve locality
* Page migration
— Allocate new pages from home node
— Remap PPNs from remote to local MPNs (migration)
— Share MPNs per-node (replication)

NUMA Scheduling: Future Directions

* Better page migration heuristics
— Determine most profitable pages to migrate

— Some high-end systems (e.g. SGI Origin) had
per-page remote miss counters

— Not available on commodity x86 platforms
 Expose NUMA to guest?

— Enable guest OS optimizations
— Impact on portability

Talk Overview

Resource controls
Processor scheduling
Memory management
NUMA scheduling
Distributed systems

Summary

Distributed Systems

e Useful features
— Choose initial host when VM powers on
— Migrate running VMs across physical hosts
— Dynamic load balancing
— Support cloud computing, multi-tenancy

e Challenges
— Migration decisions involve multiple resources
— Resource pools can span many hosts
— Appropriate migration thresholds
— Assorted failure modes (hosts, connectivity, etc.)

VMware vMotion

 “Hot” migrate VM across hosts
— Transparent to guest OS, apps
— Minimal downtime (sub-second)

* Requirements
— Shared storage (e.g. SAN/NAS/iSCSI)
— Same subnet (no forwarding proxy)
— Compatible processors (EVC)

* Details
— Track modified pages (write-protect)
— Pre-copy step sends modified pages
— Keep sending “diffs” until converge
— Start running VM on destination host
— Exploit meta-data (shared, swapped)

VMware DRS/DPM

DRS = Distributed Resource Scheduler

Cluster-wide resource management

— Uniform controls, same as available on single host
— Flexible hierarchical policies and delegation

— Configurable automation levels, aggressiveness

— Configurable VM affinity/anti-affinity rules
Automatic VM placement

— Optimize load balance across hosts

— Choose initial host when VM powers on

— Dynamic rebalancing using vMotion

DPM = Distributed Power Management

— Power off unneeded hosts, power on when needed again

DRS System Architecture

58 §
ut § SV |

clients

N - — o — o — —— — . — — —

DRS Balancing Details

Compute VM entitlements

— Based on resource pool and VM resource settings
— Don’t give VM more than it demands

— Reallocate extra resources fairly

Compute host loads

— Load # utilization unless all VMs equally important
— Sum entitlements for VMs on host

— Normalize by host capacity

Consider possible vMotions

— Evaluate effect on cluster balance

— Incorporate migration cost-benefit for involved hosts

Recommend best moves (if any)

Simple Balancing Example

4GHz

3GHz 2GHz

Host normalized
entitlement = 1.25

Recommendation

4GHz
1GHz 1GHz

Host normalized
entitlement = 0.5

: migrate VM2

DPM Details (Simplified)

» Set target host demand/capacity ratio (63% * 18%)
— |f some hosts above target range, consider power on
— |f some hosts below target range, consider power off

* For each candidate host to power on
— Ask DRS “what if we powered host off and rebalanced?”
— If more hosts within (or closer to) target, recommend action
— Stop once no hosts are above target range

* For each candidate host to power off
— Ask DRS “what if we powered host off and rebalanced?”
— If more hosts within (or closer to) target, recommend action
— Stop once no hosts are below target range

Distributed 1/0 Management

* Host-level I/O scheduling
— Arbitrate access to local NICs and HBAs
— Disk 1/O bandwidth management (SFQ)
— Network traffic shaping

* Distributed systems
— Host-level scheduling insufficient
— Multiple hosts access same storage array / LUN
— Array behavior complex, need to treat as black box
— VMware PARDA approach [Gulati et al. FAST ’09]

PARDA Architecture

Host-Level
Issue Queues

VE-®

Array Queue

H—
g T

w

Storage Array
[| \
] 00— G
7 /
Queue lengths varied dynamically

based on average request latency

PARDA End-to-End |/O Control

VM Shares 2000 - : }OLTPVMS
20 10 10 10 1800 - B (ometer VMs

1600 -
.

1400 A
1000 -
800 A
600
400 -
200 -

1200 -
Host Shares 1 2 3 4

Iomt Iomt

OLTP

Throughput (IOPS)

e Shares respected independent of VM placement
» Specified I/0 latency threshold enforced (25 ms)

Distributed Systems: Future Directions

* Large-scale cloud management

* Virtual disk placement/migrations
— Leverage “storage vMotion” as primitive
— Storage analog of DRS
— VMware BASIL approach [Gulati et al. FAST ’10]

* Proactive migrations
— Detect longer-term trends
— Move VMs based on predicted load

Summary

* Resource management
— Controls for specifying allocations
— Processor, memory, NUMA, 1/0O, power
— Tradeoffs between multiple resources

— Distributed resource management

* Rich research area
— Plenty of interesting open problems

— Many unique solutions

Backup Slides

CPU Resource Entitlement

 Resources that each VM “deserves”
— Combining shares, reservation, and limit
— Allocation if all VMs full active (e.g. CPU-bound)
— Concrete units (MHz)

e Entitlement calculation (conceptual)
— Entitlement initialized to reservation
— Hierarchical entitlement distribution

— Fine-grained distribution (e.g. 1 MHz at a time),
preferentially to lowest entitlement/shares

— Don’t exceed limit

e What if VM idles?
— Don’t give VM more than it demands
— CPU scheduler distributes resources to active VMs
— Unused reservations not wasted

TL

B

VA

PA

Large Pages

VA—PA mapping

4K

/1

]|

v
~

P4

A 4

Ps12

4K

Contiguous memory (2M)

* Small page (4 KB)
— Basic unit of x86 memory
management
— Single page table entry
maps to small 4K page
e Large page (2 MB)
— 512 contiguous small pages

— Single page table entry
covers entire 2M range

— Helps reduce TLB misses
— Lowers cost of TLB fill

Nested Page Tables

TLB GVPN—GPPN mapping
7
VA PA 4t n-level
Guest cr3 " ‘ _ ’[paabgl 2
TLB fil ' ; Guest
hardware VMM
Nested cr3 m-level
page
table
GPPN—MPN mapping

Quadratic page table walk time, O(n*m)

