
Resource Management for

Virtualized Systems

Carl Waldspurger (SB SM ’89 PhD ’95)

VMware R&D

Virtualized Resource Management

• Physical resources

– Actual “host” hardware

– Processors, memory, I/O devices, etc.

• Virtual resources

– Virtual “guest” hardware abstractions– Virtual “guest” hardware abstractions

– Processors, memory, I/O devices, etc.

• Resource management

– Map virtual resources onto physical resources

– Multiplex physical hardware across VMs

– Manage contention based on admin policies

Resource Management Goals

• Performance isolation

– Prevent VMs from monopolizing resources

– Guarantee predictable service rates

• Efficient utilization

– Exploit undercommitted resources

– Overcommit with graceful degradation

• Support flexible policies

– Meet absolute service-level agreements

– Control relative importance of VMs

Talk Overview

• Resource controls

• Processor scheduling

• Memory management

• NUMA scheduling• NUMA scheduling

• Distributed systems

• Summary

Resource Controls

• Useful features

– Express absolute service rates

– Express relative importance

– Grouping for isolation or sharing

• Challenges• Challenges

– Simple enough for novices

– Powerful enough for experts

– Physical resource consumption vs.
application-level metrics

– Scaling from single host to cloud

VMware Basic Controls

• Shares
– Specify relative importance

– Entitlement directly proportional to shares

– Abstract relative units, only ratios matter

• Reservation
– Minimum guarantee, even when system overloaded– Minimum guarantee, even when system overloaded

– Concrete absolute units (MHz, MB)

– Admission control: sum of reservations ≤ capacity

• Limit
– Upper bound on consumption, even if underloaded

– Concrete absolute units (MHz, MB)

Shares Examples

Change shares for VM

Dynamic reallocation

Add VM, overcommit

Graceful degradation

Remove VM

Exploit extra resources

Reservation Example

• Total capacity

– 1800 MHz reserved

– 1200 MHz available

• Admission control
VM1VM1 VM2VM2

• Admission control

– 2 VMs try to power on

– Each reserves 900 MHz

– Unable to admit both

• VM1 powers on

• VM2 not admitted

VM1VM1 VM2VM2

Limit Example

• Current utilization

– 1800 MHz active

– 1200 MHz idle

• Start CPU-bound VM

– 600 MHz limitVMVM – 600 MHz limit

– Execution throttled

• New utilization

– 2400 MHz active

– 600 MHz idle

– VM prevented from
using idle resources

VMVM

VMware Resource Pools

• Motivation

– Allocate aggregate resources for sets of VMs

– Isolation between pools, sharing within pools

– Flexible hierarchical organization

– Access control and delegation– Access control and delegation

• What is a resource pool?

– Named object with permissions

– Reservation, limit, and shares for each resource

– Parent pool, child pools, VMs

Resource Pools Example

• Admin manages users

• Policy: Alice’s share is

50% more than Bob’s

• Users manage own VMs

• Not shown: resvs, limits
Bob

200 Admin

Alice

300 Admin

Admin

• Not shown: resvs, limits

• VM allocations:

30%

30%

40%

Bob

VM3

400 Bob

Alice

75 Alice 75 Alice

VM2VM1

Example: Bob Adds VM

• Same policy

• Pools isolate users

• Alice still gets 50%

more than Bob

• VM allocations:
Bob

200 Admin

Alice

300 Admin

Admin

• VM allocations:

30%

30% 13%

27%

Bob

400 Bob

Alice

75 Alice 75 Alice 800 Bob

VM3VM2VM1 VM4

Resource Controls: Future Directions

• Application-level metrics

– Users think in terms of transaction rates, response times

– Requires detailed app-specific knowledge and monitoring

– Can layer on top of basic physical resource controls

• Other controls?• Other controls?

– Real-time latency guarantees

– Price-based mechanisms and multi-resource tradeoffs

• Emerging DMTF standard

– Reservation, limit, “weight” + resource pools

– Authors from VMware, Microsoft, IBM, Citrix, etc.

Talk Overview

• Resource controls

• Processor scheduling

• Memory management

• NUMA scheduling• NUMA scheduling

• Distributed systems

• Summary

Processor Scheduling

• Useful features
– Accurate rate-based control

– Support both UP and SMP VMs

– Exploit multi-core, multi-threaded CPUs

– Grouping mechanism

• Challenges• Challenges
– Efficient scheduling of SMP VMs

– VM load balancing, interrupt balancing

– Cores/threads may share cache, functional units

– Lack of control over µarchitectural fairness

– Proper accounting for interrupt-processing time

VMware Processor Scheduling

• Scheduling algorithms
– Rate-based controls

– Hierarchical resource pools

– Inter-processor load balancing

– Accurate accounting

• Multi-processor VM support• Multi-processor VM support
– Illusion of dedicated multi-processor

– Near-synchronous co-scheduling of VCPUs

– Support hot-add VCPUs

• Modern processor support
– Multi-core sockets with shared caches

– Simultaneous multi-threading (SMT)

Proportional-Share Scheduling

• Simplified virtual-time algorithm

– Virtual time = usage / shares

– Schedule VM with smallest virtual time

• Example: 3 VMs A, B, C with 3 : 2 : 1 share ratio

B

A

C

2

3

6

4

3

6

4

6

6

6

6

6

8

6

6

8

9

6

8

9

12

10

9

12

10

12

12

Hierarchical Scheduling

• Motivation

– Enforce fairness at each

resource pool

– Unused resources flow

to closest relatives

• ApproachBobBobBobBob

AdminAdminAdminAdmin

AliceAliceAliceAlice

vtime = 2000 vtime = 2000 vtime = 2000 vtime = 2000 vtime = 2100vtime = 2100vtime = 2100vtime = 2100

• Approach

– Maintain virtual time at

each node

– Recursively choose node

with smallest virtual time

BobBobBobBob

VM2VM2VM2VM2 VM4VM4VM4VM4VM3VM3VM3VM3VM1VM1VM1VM1

vtime = 2200vtime = 2200vtime = 2200vtime = 2200 vtime = 1800vtime = 1800vtime = 1800vtime = 1800 vtime=2100vtime=2100vtime=2100vtime=2100 vtime = 2200vtime = 2200vtime = 2200vtime = 2200

flow unused time

Inter-Processor Load Balancing

• Motivation
– Utilize multiple processors efficiently

– Enforce global fairness

– Amortize context-switch costs

– Preserve cache affinity

• Approach• Approach
– Per-processor dispatch and run queues

– Scan remote queues periodically for fairness

– Pull whenever a physical CPU becomes idle

– Push whenever a virtual CPU wakes up

– Consider cache affinity cost-benefit

Co-Scheduling SMP VMs

• Motivation

– Maintain illusion of dedicated multiprocessor

– Correctness: avoid guest BSODs / panics

– Performance: consider guest OS spin locks

• VMware Approach• VMware Approach

– Limit “skew” between progress of virtual CPUs

– Idle VCPUs treated as if running

– Deschedule VCPUs that are too far ahead

– Schedule VCPUs that are behind

• Alternative: Para-virtualization

Charging and Accounting

• Resource usage accounting

– Pre-requisite for enforcing scheduling policies

– Charge VM for consumption

– Also charge enclosing resource pools

– Adjust accounting for SMT systems– Adjust accounting for SMT systems

• System time accounting

– Time spent handling interrupts, BHs, system threads

– Don’t penalize VM that happened to be running

– Instead charge VM on whose behalf work performed

– Based on statistical sampling to reduce overhead

Processor Scheduling: Future Directions

• Shared cache management

– Explicit cost-benefit tradeoffs for migrations

e.g. based on cache miss-rate curves (MRCs)

– Compensate VMs for co-runner interference

– Hardware cache QoS techniques– Hardware cache QoS techniques

• Power management

– Exploit frequency and voltage scaling (P-states)

– Exploit low-power, high-latency halt states (C-states)

– Without compromising accounting and rate guarantees

Talk Overview

• Resource controls

• Processor scheduling

• Memory management

• NUMA scheduling• NUMA scheduling

• Distributed systems

• Summary

Memory Management

• Useful features

– Efficient memory overcommitment

– Accurate resource controls

– Exploit deduplication opportunities

– Leverage hardware capabilities– Leverage hardware capabilities

• Challenges

– Reflecting both VM importance and working-set

– Best data to guide decisions private to guest OS

– Guest and meta-level policies may clash

Memory Virtualization

• Extra level of indirection
– Virtual → “Physical”

Guest maps VPN to PPN
using primary page tables

– “Physical” → Machine
VMM maps PPN to MPN

• Shadow page table

VPN

shadow
page table

guest

• Shadow page table
– Traditional VMM approach

– Composite of two mappings

– For ordinary memory references,
hardware maps VPN to MPN

• Nested page table hardware
– Recent AMD RVI, Intel EPT

– VMM manages PPN-to-MPN table

– No need for software shadows

PPN

MPN

hardware
TLB

page table

VMM

Reclaiming Memory

• Required for memory overcommitment
– Increase consolidation ratio, incredibly valuable

– Not supported by most hypervisors

– Many VMware innovations [Waldspurger OSDI ’02]

• Traditional: add transparent swap layer
– Requires meta-level page replacement decisions– Requires meta-level page replacement decisions

– Best data to guide decisions known only by guest

– Guest and meta-level policies may clash

– Example: “double paging” anomaly

• Alternative: implicit cooperation
– Coax guest into doing page replacement

– Avoid meta-level policy decisions

Ballooning

Guest OS

Guest OS

balloon

inflate balloon

(+ pressure)
may page out

to virtual disk

guest OS manages memory
Guest OS

balloon

Guest OS
deflate balloon

(– pressure)

may page in

from virtual disk

guest OS manages memory

implicit cooperation

Page Sharing

• Motivation

– Multiple VMs running same OS, apps

– Deduplicate redundant copies of code, data, zeros

• Transparent page sharing

– Map multiple PPNs to single MPN copy-on-write– Map multiple PPNs to single MPN copy-on-write

– Pioneered by Disco [Bugnion et al. SOSP ’97],
but required guest OS hooks

• VMware content-based sharing

– General-purpose, no guest OS changes

– Background activity saves memory over time

Page Sharing: Scan Candidate PPN

VM 1 VM 2 VM 3

011010
110101
010111
101100

Machine …06afHash:

hint frame

hash page contents
…2bd806af

Machine
Memory

…06af
3
43f8
123b

Hash:
VM:
PPN:
MPN: hash

table

Page Sharing: Successful Match

VM 1 VM 2 VM 3

Machine

shared frame

Machine
Memory …06af

2
123b

Hash:
Refs:
MPN: hash

table

Memory Reclamation: Future Directions

• Memory compression

– Old idea: compression cache [Douglis USENIX ’93],

Connectix RAMDoubler (MacOS mid-90s)

– Recent: Difference Engine [Gupta et al. OSDI ’08],

future VMware ESX releasefuture VMware ESX release

• Sub-page deduplication

• Emerging memory technologies

– Swapping to SSD devices

– Leveraging phase-change memory

Memory Allocation Policy

• Traditional approach

– Optimize aggregate system-wide metric

– Problem: no QoS guarantees, VM importance varies

• Pure share-based approach

– Revoke from VM with min shares-per-page ratio

– Problem: ignores usage, unproductive hoarding

• Desired behavior

– VM gets full share when actively using memory

– VM may lose pages when working-set shrinks

Reclaiming Idle Memory

• Tax on idle memory

– Charge more for idle page than active page

– Idle-adjusted shares-per-page ratio

• Tax rate

– Explicit administrative parameter

– 0% ≈ “plutocracy” … 100% ≈ “socialism”

• High default rate

– Reclaim most idle memory

– Some buffer against rapid working-set increases

Idle Memory Tax: 0%

• Experiment

– 2 VMs, 256 MB, same shares

– VM1: Windows boot+idle

– VM2: Linux boot+dbench

– Solid: usage, Dotted: active150

200

250

300

M
e

m
o

ry
 (

M
B

)

– Solid: usage, Dotted: active

• Change tax rate

• Before: no tax

– VM1 idle, VM2 active

– Get same allocation
0

50

100

0 10 20 30 40 50 60

Time (min)

M
e

m
o

ry
 (

M
B

)

Idle Memory Tax: 75%

• Experiment

– 2 VMs, 256 MB, same shares

– VM1: Windows boot+idle

– VM2: Linux boot+dbench

– Solid: usage, Dotted: active150

200

250

300

M
e

m
o

ry
 (

M
B

)

– Solid: usage, Dotted: active

• Change tax rate

• After: high tax

– Redistributed VM1 → VM2

– VM1 reduces to min size

– VM2 throughput improves

more than 30%

0

50

100

150

0 10 20 30 40 50 60

Time (min)

M
e

m
o

ry
 (

M
B

)

Allocation Policy: Future Directions

• Memory performance estimates

– Estimate effect of changing allocation

– Miss-rate curve (MRC) construction

• Improved coordination of mechanisms

– Ballooning, compression, SSD, swapping

• Leverage guest hot-add/remove

• Large page allocation efficiency and fairness

Talk Overview

• Resource controls

• Processor scheduling

• Memory management

• NUMA scheduling• NUMA scheduling

• Distributed systems

• Summary

NUMA Scheduling

• NUMA platforms

– Non-uniform memory access

– Node = processors + local memory + cache

– Examples: IBM x-Series, AMD Opteron, Intel Nehalem

• Useful features• Useful features

– Automatically map VMs to NUMA nodes

– Dynamic rebalancing

• Challenges

– Tension between memory locality and load balance

– Lack of detailed counters on commodity hardware

VMware NUMA Scheduling

• Periodic rebalancing
– Compute VM entitlements, memory locality

– Assign “home” node for each VM

– Migrate VMs and pages across nodes

• VM migration
– Move all VCPUs and threads associated with VM– Move all VCPUs and threads associated with VM

– Migrate to balance load, improve locality

• Page migration
– Allocate new pages from home node

– Remap PPNs from remote to local MPNs (migration)

– Share MPNs per-node (replication)

NUMA Scheduling: Future Directions

• Better page migration heuristics

– Determine most profitable pages to migrate

– Some high-end systems (e.g. SGI Origin) had

per-page remote miss counters

– Not available on commodity x86 platforms– Not available on commodity x86 platforms

• Expose NUMA to guest?

– Enable guest OS optimizations

– Impact on portability

Talk Overview

• Resource controls

• Processor scheduling

• Memory management

• NUMA scheduling• NUMA scheduling

• Distributed systems

• Summary

Distributed Systems

• Useful features

– Choose initial host when VM powers on

– Migrate running VMs across physical hosts

– Dynamic load balancing

– Support cloud computing, multi-tenancy– Support cloud computing, multi-tenancy

• Challenges

– Migration decisions involve multiple resources

– Resource pools can span many hosts

– Appropriate migration thresholds

– Assorted failure modes (hosts, connectivity, etc.)

VMware vMotion

• “Hot” migrate VM across hosts
– Transparent to guest OS, apps

– Minimal downtime (sub-second)

• Requirements
– Shared storage (e.g. SAN/NAS/iSCSI)

– Same subnet (no forwarding proxy)

– Compatible processors (EVC)– Compatible processors (EVC)

• Details
– Track modified pages (write-protect)

– Pre-copy step sends modified pages

– Keep sending “diffs” until converge

– Start running VM on destination host

– Exploit meta-data (shared, swapped)

VMware DRS/DPM

• DRS = Distributed Resource Scheduler

• Cluster-wide resource management
– Uniform controls, same as available on single host

– Flexible hierarchical policies and delegation

– Configurable automation levels, aggressiveness

– Configurable VM affinity/anti-affinity rules– Configurable VM affinity/anti-affinity rules

• Automatic VM placement
– Optimize load balance across hosts

– Choose initial host when VM powers on

– Dynamic rebalancing using vMotion

• DPM = Distributed Power Management
– Power off unneeded hosts, power on when needed again

DRS System Architecture

VirtualCenter

clients

DB

SDKUI

DRS
1•••VirtualCenter

cluster n

•••
cluster 1

••• •••

stats + actions
DRS n

•••

DRS Balancing Details

• Compute VM entitlements
– Based on resource pool and VM resource settings

– Don’t give VM more than it demands

– Reallocate extra resources fairly

• Compute host loads
– Load ≠ utilization unless all VMs equally important– Load ≠ utilization unless all VMs equally important

– Sum entitlements for VMs on host

– Normalize by host capacity

• Consider possible vMotions
– Evaluate effect on cluster balance

– Incorporate migration cost-benefit for involved hosts

• Recommend best moves (if any)

Simple Balancing Example

4GHz 4GHz

VM2VM1

3GHz 2GHz

Host normalized
entitlement = 1.25

VM3 VM4

1GHz 1GHz

Host normalized
entitlement = 0.5

Recommendation: migrate VM2

DPM Details (Simplified)

• Set target host demand/capacity ratio (63% ± 18%)

– If some hosts above target range, consider power on

– If some hosts below target range, consider power off

• For each candidate host to power on

– Ask DRS “what if we powered host off and rebalanced?”

– If more hosts within (or closer to) target, recommend action– If more hosts within (or closer to) target, recommend action

– Stop once no hosts are above target range

• For each candidate host to power off

– Ask DRS “what if we powered host off and rebalanced?”

– If more hosts within (or closer to) target, recommend action

– Stop once no hosts are below target range

Distributed I/O Management

• Host-level I/O scheduling

– Arbitrate access to local NICs and HBAs

– Disk I/O bandwidth management (SFQ)

– Network traffic shaping

• Distributed systems• Distributed systems

– Host-level scheduling insufficient

– Multiple hosts access same storage array / LUN

– Array behavior complex, need to treat as black box

– VMware PARDA approach [Gulati et al. FAST ’09]

PARDA Architecture

SFQ

SFQ

Host-Level

Issue Queues

Array Queue

SFQ

SFQ

Storage Array

Queue lengths varied dynamically

based on average request latency

PARDA End-to-End I/O Control

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

20 10 10 10 20 10

OLTP OLTP OLTP OLTP Iomtr Iomtr

VM Shares

T
h

ro
u

g
h

p
u

t
(I

O
P

S
)

Hosts

30 20 20 10
Host Shares

• Shares respected independent of VM placement

• Specified I/O latency threshold enforced (25 ms)

Distributed Systems: Future Directions

• Large-scale cloud management

• Virtual disk placement/migrations

– Leverage “storage vMotion” as primitive

– Storage analog of DRS

– VMware BASIL approach [Gulati et al. FAST ’10]

• Proactive migrations

– Detect longer-term trends

– Move VMs based on predicted load

Summary

• Resource management

– Controls for specifying allocations

– Processor, memory, NUMA, I/O, power

– Tradeoffs between multiple resources

– Distributed resource management– Distributed resource management

• Rich research area

– Plenty of interesting open problems

– Many unique solutions

Backup Slides

CPU Resource Entitlement

• Resources that each VM “deserves”
– Combining shares, reservation, and limit

– Allocation if all VMs full active (e.g. CPU-bound)

– Concrete units (MHz)

• Entitlement calculation (conceptual)
– Entitlement initialized to reservation

– Hierarchical entitlement distribution– Hierarchical entitlement distribution

– Fine-grained distribution (e.g. 1 MHz at a time),
preferentially to lowest entitlement/shares

– Don’t exceed limit

• What if VM idles?
– Don’t give VM more than it demands

– CPU scheduler distributes resources to active VMs

– Unused reservations not wasted

Large Pages

• Small page (4 KB)

– Basic unit of x86 memory

management

– Single page table entry

maps to small 4K page
TLB

%cr3

VA→PA mapping

4K

2M

M
) 4K maps to small 4K page

• Large page (2 MB)

– 512 contiguous small pages

– Single page table entry

covers entire 2M range

– Helps reduce TLB misses

– Lowers cost of TLB fill

TLB fill
hardware

VA PA

2M

C
o
n
ti
g
u
o
u
s
 m

e
m

o
ry

(2

M
)

p1

p512

4K

Nested Page Tables

VA PA

TLB

TLB fill Guest

Guest cr3

GVPN→GPPN mapping

. . .

n-level

page

table

TLB fill

hardware

Guest

VMM

Nested cr3

GPPN→MPN mapping

m-level

page

table

Quadratic page table walk time, O(n*m)

