
66 CoMMuniCations of the aCM | jAnUARY 2012 | VOL. 55 | nO. 1

practice

I
l

l
u

s
t

r
a

t
I

o
n

 b
y

 a
n

d
r

e
a

s
 k

ö
b

e
r

l
e

i/o
Virtualization

include virtual LAN (VLAN), N_Port
ID virtualization (NPIV), Intel Virtu-
alization Technology for Directed I/O
(VT-d), and Multiroot I/O Virtualiza-
tion (MR-IOV).

The common theme is decoupling
the logical from the physical, intro-
ducing a level of indirection between
the abstract and the concrete. Such in-
direction has proven to be remarkably
powerful and versatile. Modern virtu-
alization platforms exploit indirection
and abstraction in numerous ways.

A virtual machine (VM) is a soft-
ware abstraction that behaves as a
complete hardware computer, includ-
ing virtualized CPUs, RAM, and I/O de-
vices. A virtualization software layer,
known as a hypervisor, provides the
level of indirection that decouples an
operating system and its applications
from physical hardware. The term
guest is commonly used to distinguish
the layer of software running within a
VM; a guest operating system manag-
es applications and virtual hardware,
while a hypervisor manages VMs and
physical host hardware.

Although IBM invented and com-
mercialized mainframe VMs many
decades ago, VMs didn’t make the
leap to commodity hardware until
the late 1990s, when VMware pio-
neered efficient virtualization on
x86 platforms. Since then, virtu-
alization has experienced a resur-
gence of interest in both industry
and academia. Today, VMs are com-
monplace in many computing envi-
ronments and nearly ubiquitous in
enterprise data centers and cloud-
computing infrastructures.

Since virtualization is a broad top-
ic, and the universe of I/O devices is
large and diverse, this article focuses
on some representative I/O systems
issues in VM-based systems, primar-
ily in the context of a single physical
host. After highlighting key benefits
and challenges, we explore various
implementation approaches and
techniques that have been leveraged
to enable flexible, high-performance
I/O virtualization.

THe TeRM V I R t uA L is heavily overloaded, evoking
everything from virtual machines running in the cloud
to avatars running across virtual worlds. Even within
the narrower context of computer I/O, virtualization
has a long, diverse history, exemplified by logical
devices that are deliberately separate from their
physical instantiations.

for example, in computer storage, a logical unit
number (LUN) represents a logical disk that may
be backed by anything from a partition on a local
physical drive to a multidisk RAID volume exported
by a networked storage array. In computer networking,
a virtual private network (VPN) represents a logically
isolated private network, where the isolation is
provided using cryptographic methods to secure
data that may in fact traverse the public Internet.
In computer architecture, an IOMMU (I/O memory-
management unit) translates I/O-virtual memory
addresses to corresponding physical memory
addresses, making direct memory access by devices
safe and efficient. Other examples of virtualization

Doi:10.1145/2063176.2063194

 Article development led by
 queue.acm.org

Decoupling a logical device from
its physical implementation offers
many compelling advantages.

By CaRL waLDsPuRGeR anD MenDeL RosenBLuM

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2063176.2063194&domain=pdf&date_stamp=2012-01-01

jAnUARY 2012 | VOL. 55 | nO. 1 | CoMMuniCations of the aCM 67

Benefits
Many of the benefits of virtualized sys-
tems depend on the decoupling of a
VM’s logical I/O devices from its physi-
cal implementation. Examples range
from the ability to multiplex many VMs
on the same hardware to advanced vir-
tualization features such as live migra-
tion and enhanced security.

At the most basic level, decoupling
enables time- and space-multiplexing
of I/O devices, allowing multiple logi-
cal devices to be implemented by a
smaller number of physical devices.
Applications of virtualization such as
server consolidation or running het-

erogeneous operating-system environ-
ments on the same machine rely on
this feature. As inexorable trends cre-
ate ever more powerful hardware, its
not surprising that much of it remains
seriously underutilized. The ability
to multiplex logical I/O devices onto
physical ones allows both administra-
tors and automated systems to drive
I/O devices at higher utilization and
achieve better hardware efficiency.
Much of virtualization’s rapid adop-
tion over the past decade can be at-
tributed to the significant cost savings
resulting from such basic partitioning
and server consolidation.

Decoupling provides for flexible
mappings between logical and physi-
cal devices, facilitating seamless porta-
bility. By supporting mappings of logi-
cal I/O devices to physical devices with
different yet semantically compatible
interfaces, virtualization makes VMs
portable, even across heterogeneous
systems. The same VM image can be
run on computers with different I/O
devices and configurations, with the
I/O virtualization layer providing the
necessary conversion.

Decoupling also enables popular
VM features such as the ability to sus-
pend and resume a VM and the ability

68 CoMMuniCations of the aCM | jAnUARY 2012 | VOL. 55 | nO. 1

practice

to move a running VM between physi-
cal machines, known as live migra-
tion. In both of these applications, ac-
tive logical devices must be decoupled
from physical devices and recoupled
when the VM resumes after being
saved or moved.

This virtualization layer may also
change mappings to physical devices,
even when the VM itself does not move.
For example, by changing mappings
while copying storage contents, a VM’s
virtual disks can be migrated transpar-
ently between network storage units,
even while remaining in active use by
the VM. The same capability can be
used to improve availability or balance
load across different I/O channels. For
example, in a storage system with mul-
tiple paths between the machines and
storage, the virtualization layer can
rebind mappings to mask failures or
avoid delays that might occur because
of contention on paths.

I/O virtualization provides a foot-
hold for many innovative and ben-
eficial enhancements of the logical
I/O devices. The ability to interpose
on the I/O stream in and out of a VM
has been widely exploited in both re-
search papers and commercial virtu-
alization systems.

One useful capability enabled by I/O
virtualization is device aggregation,
where multiple physical devices can be
combined into a single more capable
logical device that is exported to the
VM. Examples include combining mul-

tiple disk storage devices exported as a
single larger disk, and network chan-
nel bonding where multiple network
interfaces can be combined to appear
as a single faster network interface.

New features can be added to exist-
ing systems by interposing and trans-
forming virtual I/O requests, transpar-
ently enhancing unmodified software
with new capabilities. For example, a
disk write can be transformed into rep-
licated writes to multiple disks, so that
the system can tolerate disk-device fail-
ures. Similarly, by logging and tracking
the changes made to a virtual disk, the
virtualization layer can offer a time-
travel feature, making it possible to
move a VM’s file system backward to an
earlier point in time. This functionality
is a key ingredient of the snapshot and
undo features found in many desktop
virtualization systems.

Many I/O virtualization enhance-
ments are designed to improve system
security. A simple example is running
an encryption function over the I/O to
and from a disk to implement trans-
parent disk encryption. Interposing
on network traffic allows virtualization
layers to implement advanced net-
working security, such as firewalls and
intrusion-detection systems employ-
ing deep packet inspection.

Challenges
While virtualization offers many ben-
efits, it also introduces significant
challenges. One is achieving good I/O

performance despite the potential
overhead associated with flexible in-
direction and interposition. Complex
resource-management issues such as
scheduling and prioritization are intro-
duced by multiplexing physical devices
across multiple VMs, further impact-
ing performance. Another challenge is
defining appropriate semantics for vir-
tual devices and interfaces, especially
when faced with complex physical I/O
devices or system-level optimizations.

In many systems, a nontrivial per-
formance penalty is associated with in-
direction. The same can be true for vir-
tualized I/O, since I/O operations must
conceptually traverse two separate I/O
stacks: one in the guest managing the
virtual hardware; and one in the hyper-
visor managing physical hardware. The
longer I/O path affects both latency
and throughput, and imposes addi-
tional CPU load.

Indeed, I/O-intensive workloads on
some early virtualization systems suf-
fered a virtualization penalty larger
than a factor of two. Since then, further
research, optimizations, and hardware
acceleration have reduced this penalty
into the noise for an impressive set of
demanding production workloads.
Somewhat counterintuitively, virtual-
ized systems have even outperformed
native systems on the same physical
hardware, overcoming native scaling
limitations by instead running several
smaller VM instances in a scale-out
configuration.

Figure 1 depicts the flow of an I/O
request in a virtualized system. When
an application running within a VM is-
sues an I/O request, typically by making
a system call, it is initially processed
by the I/O stack in the guest operating
system, which is also running within
the VM. A device driver in the guest is-
sues the request to a virtual I/O device,
which the hypervisor then intercepts.
The hypervisor schedules requests
from multiple VMs onto an underlying
physical I/O device, usually via another
device driver managed by the hypervi-
sor or a privileged VM with direct ac-
cess to physical hardware.

When a physical device finishes
processing an I/O request, the two I/O
stacks must be traversed again, but in
the reverse order. The actual device
posts a physical completion interrupt,
which is handled by the hypervisor. The

figure 1. an i/o request issued by an application is processed first by the guest operating
system i/o stack running within the VM, and then by the hypervisor i/o stack managing
physical hardware.

VM host

Applications Virtual Machines

Guest OS hypervisor

Virtual hardware Physical hardware

… …

emulated
disk device

local
disk device

app VM

I/
O

 S
ta

ck

I/
O

 S
ta

ckbuffer cache

I/O scheduler

device driver I/O scheduler

device driver

virtual-to-physical
translation

interpose/transform
e.g. log, encrypt

app VM

nIC

app VM

nAS

practice

jAnUARY 2012 | VOL. 55 | nO. 1 | CoMMuniCations of the aCM 69

hypervisor determines which VM is as-
sociated with the completion and noti-
fies it by posting a virtual interrupt for
the virtual device managed by the guest
operating system. To reduce overhead,
some hypervisors perform virtual inter-
rupt coalescing in software, similar to
the hardware batching optimizations
found in physical cards, which delay
interrupt delivery with the goal of post-
ing only a single interrupt for multiple
incoming events.

Interposition can incur additional
overhead by manipulating I/O requests
such as inspecting network packets
to perform security checks or encrypt-
ing disk writes transparently. In some
cases, the interposition costs are neg-
ligible, especially compared with high-
latency operations such as I/O to tradi-
tional rotating media. In other cases,
even making an extra in-memory copy
of I/O data may be prohibitively expen-
sive—for example, for fast networks
with extremely high packet rates. To
improve performance, some hypervi-
sors parallelize portions of this pro-
cessing, offloading work to additional
processor cores. Of course, when there
is contention for CPUs, this leaves few-
er cores available for running VMs.

Managing resources in virtualized
systems presents additional challeng-
es. Although each VM is presented with
the illusion of having its own dedicated
virtual hardware, in reality the hyper-
visor must multiplex limited physical
hardware across multiple VMs of vary-
ing importance, mapping their virtual
resources onto available physical re-
sources. At the most basic level, con-
tention for a physical device will result
in scheduling delays for some VMs. At
a minimum, the hypervisor must pre-
vent VMs from monopolizing resourc-
es and denying service to others.

More generally, the hypervisor
should provide some measure of
performance isolation or quality-of-
service controls to reflect the relative
importance or absolute requirements
of diverse VM workloads. The abil-
ity to express resource-management
policies is especially important when
physical resources are shared across
multiple users or organizations, as is
common in multitenant cloud-com-
puting environments. Several hypervi-
sors support a relative weight control,
where a VM’s allocation is directly pro-

portional to its weight. Some also pro-
vide absolute reservation and limit set-
tings, which bound a VM’s minimum
and maximum allocation, regardless
of system load.

For I/O devices that can be accessed
concurrently by VMs on different hosts,
such as networked storage arrays, re-
source management requires distrib-
uted algorithms to schedule requests
fairly and efficiently. Virtualization
platforms have only recently started of-
fering sophisticated solutions capable
of providing end-to-end quality of ser-
vice for VM I/O bandwidth and latency.

Scheduling may also impact VM
performance in subtler ways. For ex-
ample, contention for CPU resources
can cause problems for TCP network-
ing performance. TCP connections
rely on accurate round-trip time (RTT)
estimates in order to perform flow
control and adjust window sizes ap-
propriately. A VM, however, may be de-
scheduled for tens or even hundreds
of milliseconds while a packet is pend-
ing. As a result, CPU time-multiplexing
can distort a VM’s RTT values, caus-
ing its congestion windows to grow
too slowly, which degrades through-
put significantly. To solve this prob-
lem, some researchers have proposed
offloading more TCP functionality to
the hypervisor. Another option would
be to present VMs with virtual network
interface controller (NIC) hardware
that supports optional TCP Offload
Engine (TOE) functionality, as found
in some physical NICs.

The very idea of adding TCP offload
capabilities to a virtual NIC highlights
the difficulty of choosing appropriate
semantics for virtual hardware. This
is especially true for devices with even
more complex interfaces, such as mod-
ern graphics cards. At one extreme,
virtual hardware can have an interface
identical to a physical device. This ap-
proach has the compelling advantage
of compatibility with all software that
already supports (or will support) the
physical device. Unfortunately, such
transparency usually comes at the cost
of emulating a fairly complex virtual
device interface that was not designed
to support virtualization efficiently. At
the other extreme, virtual hardware
can have a completely new hypervisor-
specific interface, designed explicitly
to be simple and efficient.

i/o virtualization
provides a foothold
for many
innovative
and beneficial
enhancements
of the logical
i/o devices.

70 CoMMuniCations of the aCM | jAnUARY 2012 | VOL. 55 | nO. 1

practice

A related challenge is ensuring that
virtualization faithfully preserves the
semantics that software expects of
physical devices. For example, some
virtualization systems boost I/O per-
formance by leveraging a hypervisor-
level buffer cache between the VM and
physical storage. While caching reads
does not introduce any problems, cach-
ing writes would violate the durability
semantics relied upon by guest file sys-
tems, databases, and other software. In
a native, unvirtualized system, an I/O
completion indicates that a write has
been committed. Hypervisors must use
a write-through cache to preserve this
property, although some provide an ex-
plicit option to trade off safety for per-
formance by relaxing this constraint.

Direct memory access (DMA) il-
lustrates additional safety and perfor-
mance issues. It enables an I/O device
to read and write host RAM directly
without involving the CPU, which
is critical for achieving high-perfor-
mance I/O rates. Unfortunately, giving
devices the ability to use DMA to reach
arbitrary physical memory locations
is risky, especially since the majority
of operating-system bugs result from
misbehaving device drivers. As discussed
in the next section, virtualization systems
can ensure strict isolation between VMs
by employing various approaches, such as
leveraging hardware IOMMU functional-
ity at both the guest and hypervisor levels.

approaches
The classic way of implementing I/O
virtualization is to structure the soft-
ware in two parts: an emulated virtual
device that is exported to the VM and a
back-end implementation that is used
by the virtual-device emulation code
to provide the semantics of the device.
Modern hypervisors support an I/O
virtualization architecture with a split
implementation, as shown in Figure
2, where a virtual machine can select
among different virtual device inter-
face emulation front-ends as well as
multiple different backend implemen-
tations of the device. For example, the
virtual machine can be configured with
an IDE, a SCSI, or a paravirtualized disk
device that is implemented using a file,
a local disk, or a storage area network
(SAN). Here, we describe the way these
are implemented in modern virtualiza-
tion systems and discuss some of the

available optimization options.
As a concrete example, consider a

legacy PC I/O device such as an IDE
disk. The operating system in the VM
would call a device driver to launch
disk read or write requests. The device
driver would include OUT instruc-
tions that program the operation type,
device number, disk-sector number,
length, and buffer-memory location
for the operation. The driver assumes
that the device will use DMA to trans-
fer the contents between memory and
the disk device and then raise an inter-
rupt when it is done. For the emulated
device to work correctly, the emula-
tion software must catch and interpret
the OUT instructions to determine
the correct operation and its argu-
ments; perform an emulation of the
operation by storing or fetching the
requested block of storage, using the
emulation of the architecture’s DMA
capability to read or write memory;
and finally raise the proper interrupt
signal on the VM to notify the driver
that the request is finished.

While the device emulation code
is specific to the particular device be-
ing emulated (for example, an IDE
disk), the semantics of the operations
being performed are general and fre-
quently constructed so that the same
device emulation can access multiple
different back-end implementations.
For example, with virtual disks, the
back-end implementation could be
as simple as forwarding the request
untransformed to a native physical
IDE controller or as complex as imple-
menting the storage for the virtual
disk as a file in a host operating-sys-
tem file system, as in many desktop
virtualization products. In the latter
case, the back end must generate host
operating-system file-system read and
write operations for the file contain-
ing the virtual disk contents in order
to perform emulated virtual disk-sec-
tor read and write operations.

A pluggable structure for back-end
implementations makes it easy to gen-
erate new capabilities for virtual devic-
es. A disk-storage back end can imple-
ment an emulated CD-ROM device for
a VM simply by accessing a file contain-
ing its ISO (International Organization
for Standardization) image. Similarly,
the snapshot and undo capabilities in
modern virtualization systems can be

the classic way
of implementing
i/o virtualization
is to structure the
software in two
parts: an emulated
virtual device
exported to
the VM and
a back-end
implementation
used by
the virtual-device
emulation code
to provide
the emantics
of the device.

practice

jAnUARY 2012 | VOL. 55 | nO. 1 | CoMMuniCations of the aCM 71

implemented by logging rather than
overwriting a virtual-disk file, enabling
the virtualization layer to control which
version of the disk is visible to the VM.

Along with flexibility and innovative
features come potential performance
penalties, which can vary greatly. A
back end optimized for a server ma-
chine that efficiently shuttles emu-
lated reads and writes to a portion of a
local disk may have very low virtualiza-
tion overheads. In contrast, the penalty
may be relatively large for a desktop-
virtualization back end where the data
is stored in an encrypted file on a net-
work file system used by the host oper-
ating system. Not only would every read
and write request traverse the file sys-
tem and networking code of the host
operating system and the network file
system, but additional encryption and
decryption overhead would also be in-
curred for each sector.

Much current research in I/O vir-
tualization is focused on either new
interposition functionality that solves
some problem or optimizations for
reducing the overheads associated
with the virtualization. Optimization
has been an especially important goal
in server virtualization and consolida-
tion, where overheads directly impact
metrics such as the number of VMs
supported per server. Beyond back-end
optimizations, reducing I/O-virtual-
ization overhead requires decreasing
virtual-device emulation costs. Several
recent optimizations have tried exactly
this using either software or modifica-
tions to the I/O device hardware.

One of the software techniques for
lowering emulation costs is to reduce
the number of trap-and-emulate op-
erations the hypervisor is required to
do to perform an I/O operation. For ex-
ample, the legacy PC IDE interface uses
eight-bit OUT instructions to commu-
nicate with the disk controller. Com-
municating the sector number, buffer
address, and length requires multiple
such instructions, causing repeated
traps into the hypervisor to run the de-
vice emulation code. Using the driver
for an alternative disk device such as
a SCSI disk can achieve the same func-
tionality with far fewer traps, greatly re-
ducing the emulation overheads.

Even further reduction can be
achieved by optimizing the communi-
cation between the VM software and

end implementation overheads.
Although pass-through mode can

remove I/O virtualization overheads,
it introduces several limitations and
implementation challenges that have
slowed its deployment. Aside from
the obvious limitation that each pass-
through device can be used by only a
single VM, pass-through forms a cou-
pling between the hardware and the
VM. As a result, many of the portability
benefits of virtualization are lost, along
with key benefits such as live migration
and features that depend on the ability
to interpose on I/O.

One of the biggest challenges of
pass-through mode affects devices
that use DMA. The fundamental
problem is that the driver in the VM
will program device DMA using the
guest’s notion of memory addresses,
which differ from the real memory
addresses in which the VM’s memory
resides. This is not only incorrect, but
also a large safety and security prob-
lem since the device could read and
write memory potentially belonging
to the hypervisor or some other VM.
To make this work, the VM’s driver
must translate memory addresses to
use the correct real memory before
programming them into the device.
This exposes the driver to the details
of hypervisor memory virtualization
and still has safety problems since
bugs in the driver can result in incor-
rect translations.

To eliminate both the limitations
and the challenges of pass-through, de-
vice builders have modified their hard-
ware to be aware of the virtualization
layer. To handle the limitation of exclu-
sive pass-through-only devices, such
virtualization-aware hardware exports

the device emulation. In modern op-
erating-system environments such as
Windows and Linux, it is possible to in-
stall device drivers that communicate
the request’s arguments to the hyper-
visor’s device emulation code directly,
with minimal overhead. This approach
of using virtual hardware optimized
for the virtualization layer rather than
matching any particular real device
is referred to as paravirtualization. In
practice, most modern virtualization
platforms support an emulated legacy
device for compatibility, as well as pro-
viding an optional paravirtual device
for higher performance.

As an example, a paravirtualized
disk interface could have the device
emulation code accept commands via
a memory segment shared between
the driver and the emulation, allowing
communication of commands with
practically zero overhead. The emula-
tion code simply passes the command
to the optimized back-end implemen-
tation. Examples include Xen’s virtual
block-device front-end driver and VM-
ware’s PVSCSI guest disk driver.

For an I/O device used by only a sin-
gle VM, where the back-end implemen-
tation is mostly passing through the
driver commands from the VM to the
device, it is tempting to pass through
the device directly, assigning it to the
VM exclusively. Consider the example
of a high-performance NIC that is used
by only one of the VMs running on a
computer. It is relatively easy to con-
figure the CPU virtualization so the x86
instructions that talk to the device can
be connected directly to the device and
incur zero I/O virtualization overheads.
This pass-through mode can eliminate
both the device emulation and back-

figure 2. Modern hypervisors split device virtualization into a front-end emulation and
a backend implementation. for example, virtual machines can be configured with iDe,
sCsi, or paravirtualized disk devices that are implemented either as a file, a local disk,
or a san storage area network. the emulated and physical devices, such as the sCsi
front-end and local sCsi back-end, may differ in size and other attributes.

hypervisor

VM VM VM VM

IDe

host FS

SCSI ParaVirt IDe

Local SCSI SAn

Disk front-ends:

Disk back-ends:

72 CoMMuniCations of the aCM | jAnUARY 2012 | VOL. 55 | nO. 1

practice

multiple interfaces, each of which can
be attached to a different VM. As a re-
sult, each VM is given its own directly
accessible pass-through copy of the
device. For example, a virtualization-
aware NIC could have many personali-
ties that look and act as if many sepa-
rate NICs had been directly mapped
into different VMs.

Additional hardware support is
needed to address the challenges of
performing DMA operations directly
involving VM memory. A memory man-
agement unit is employed to map the
DMA operation’s memory addresses
into the correct locations in the VM’s
memory. This mapping hardware—the
IOMMU—is programmed for each VM
attached to a device with the mappings
of where the VM resides in memory.
Each DMA request is run through the
IOMMU, which routes the request to
or from the correct location in the real
machine memory or generates an error
if the request is not valid. The IOMMU
allows the driver in the VM to program
device DMA using its virtualized notion
of memory addresses, while still allow-
ing the hypervisor to decide where VM
memory is actually located in physical
machine memory. The IOMMU also
provides a level of safety, ensuring that
even buggy driver software in the guest
cannot generate DMA accesses to loca-
tions outside the VM.

Although IOMMUs can safely and
efficiently allow virtualization-aware
I/O devices to access the memory of
a virtual machine directly, there are
implications for some of the more so-
phisticated memory virtualization op-
erations in modern hypervisors that
rely upon dynamic page remapping.
Consider features such as overcom-
mitting memory, where the hypervisor
can reclaim RAM via techniques such
as demand-paging VM memory to sec-
ondary storage; memory compression;
or transparent memory sharing where
identical pages can be de-duplicated
by sharing them read-only between
multiple virtual machines. These fea-
tures require that certain accesses to
VM memory take faults and invoke
hypervisor actions before they are al-
lowed to proceed. DMA devices need
to respect this, and hence the devices
need to support something similar to
page faults on DMA operations where
the hypervisor is invoked before the

device multiplexing is used to consoli-
date different workloads onto the same
physical hardware. Defining clean inter-
faces and appropriate semantics for vir-
tual devices is also challenging.

I/O virtualization remains an active
area of research and development in
both academia and industry. Although
we focused here on systems issues
from the perspective of an individual
physical machine, the broader context
of I/O virtualization includes an enor-
mous range of work on distributed sys-
tems and the fabrics that connect their
virtual and physical components. The
increasing prevalence and commer-
cial success of systems based on virtual
machines is certain to fuel demand for
new virtualization optimizations and
I/O capabilities.

 Related articles
 on queue.acm.org

The Virtualization Reality
Simon Crosby, David Brown
http://queue.acm.org/detail.cfm?id=1189289

network Virtualization: Breaking
the Performance Barrier
Scot Rixner
http://queue.acm.org/detail.cfm?id=1348592

The Cost of Virtualization
Ulrich Drepper
http://queue.acm.org/detail.cfm?id=1348591

Suggested Reading
1. ahmad, I., gulati, a. and Mashtizadeh, a. vIC:

Interrupt coalescing for virtual machine storage
device Io. In Proceedings of the 2011 Usenix Annual
Technical Conference (june 2011).

2. amit, n., ben-yehuda, M., tsafrir, d. and schuster, a.
IoMMu: efficient IoMMu emulation. In Proceedings
of the 2011 Usenix Annual Technical Conference (june
2011).

3. gamage, s., kangarlou, a., kompella, r.r. and Xu,
d. opportunistic flooding to improve tCP transmit
performance in virtualized clouds. In Proceedings
of the Second ACM Symposium on Cloud Computing
(oct. 2011).

4. gulati, a., ahmad, I. and waldspurger, C. Parda:
Proportional allocation of resources for storage
access. In Proceedings of the Seventh Conference on
File and Storage Technologies (feb. 2009).

5. sugerman, j., venkitachalam, g. and lim, b-h.
virtualizing I/o devices on vMware workstation’s
hosted virtual machine monitor. In Proceedings of
the 2001 Usenix Annual Technical Conference (june
2001).

Carl Waldspurger is currently working with stelth-mode
startups. for most of the previous decade, he was a
principal engineer at vMware, where he was responsible
for core resource management and virtualization
technologies, including scheduling, memory management,
and distributed systems.

Mendel Rosenblum is an associate professor in the
computer science and electrical engineering departments
at stanford university. his research interests include
system software, distributed systems, and computer
architecture. he was cofounder of vMware Inc. and active
in the r&d of vMware’s virtualization platform.

© 2012 aCM 0001-0782/12/01 $10.00

DMA is permitted to finish. The ability
to tolerate arbitrary delays on DMA op-
erations can have a much deeper im-
pact on the changes needed to make
an I/O device virtualization-aware.

While production hypervisors em-
ploy hardware IOMMUs and other
hardware-enforced memory-mapping
techniques to guarantee isolation be-
tween VMs, they have not yet included
IOMMUs in the virtual hardware pre-
sented to VMs. A virtual IOMMU (vIOM-
MU) would allow a guest operating
system to defend against its own buggy
device drivers, as in a native system.

Recently, researchers have developed
new IOMMU emulation techniques
for efficiently providing vIOMMUs to
guests. Even more significantly, the
same approach facilitates a more flexi-
ble form of device pass-through, where a
VM is allowed to interact with a directly-
assigned I/O device without hypervisor
intervention. Since the guest exposes
which regions of its memory are current-
ly involved in DMA operations to the
vIOMMU, the hypervisor is able to mod-
ify mappings for other memory regions
safely. By interposing only on vIOMMU
operations, it is possible to achieve near-
native I/O performance while preserving
the hypervisor’s ability to manage, re-
map, and overcommit memory.

Conclusion
Decoupling a logical device from its
physical implementation offers many
compelling advantages. A single physi-
cal device can be multiplexed, allowing
it to act as many virtual devices, improv-
ing hardware utilization. Abstracting
away details about specific hardware
and physical location makes seamless
migration possible. The level of indi-
rection between virtual and physical
also provides a convenient hook for in-
terposing on I/O operations transpar-
ently, enabling new capabilities such
as replication, load balancing, encryp-
tion, and security checks.

A key challenge in I/O virtualization
is achieving these benefits with mini-
mal overhead. A number of clever soft-
ware and hardware approaches have
been devised to achieve high-perfor-
mance indirection and interposition,
including paravirtualization and virtu-
alization-aware devices. Resource-man-
agement issues, such as scheduling and
prioritization, become important when

