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Virtualization

include virtual LAN (VLAN), N_Port  
ID virtualization (NPIV), Intel Virtu-
alization Technology for Directed I/O 
(VT-d ), and Multiroot I/O Virtualiza-
tion (MR-IOV).  

The common theme is decoupling 
the logical from the physical, intro-
ducing a level of indirection between 
the abstract and the concrete. Such in-
direction has proven to be remarkably 
powerful and versatile. Modern virtu-
alization platforms exploit indirection 
and abstraction in numerous ways. 

A virtual machine (VM) is a soft-
ware abstraction that behaves as a 
complete hardware computer, includ-
ing virtualized CPUs, RAM, and I/O de-
vices. A virtualization software layer, 
known as a hypervisor, provides the 
level of indirection that decouples an 
operating system and its applications 
from physical hardware. The term 
guest is commonly used to distinguish 
the layer of software running within a 
VM; a guest operating system manag-
es applications and virtual hardware, 
while a hypervisor manages VMs and 
physical host hardware. 

Although IBM invented and com-
mercialized mainframe VMs many 
decades ago, VMs didn’t make the 
leap to commodity hardware until 
the late 1990s, when VMware pio-
neered efficient virtualization on 
x86 platforms. Since then, virtu-
alization has experienced a resur-
gence of interest in both industry 
and academia. Today, VMs are com-
monplace in many computing envi-
ronments and nearly ubiquitous in 
enterprise data centers and cloud-
computing infrastructures.

Since virtualization is a broad top-
ic, and the universe of I/O devices is 
large and diverse, this article focuses 
on some representative I/O systems 
issues in VM-based systems, primar-
ily in the context of a single physical 
host. After highlighting key benefits 
and challenges, we explore various 
implementation approaches and 
techniques that have been leveraged 
to enable flexible, high-performance 
I/O virtualization.

THe TeRM V I R t uA L  is heavily overloaded, evoking 
everything from virtual machines running in the cloud 
to avatars running across virtual worlds. Even within 
the narrower context of computer I/O, virtualization 
has a long, diverse history, exemplified by logical 
devices that are deliberately separate from their 
physical instantiations.

for example, in computer storage, a logical unit 
number (LUN) represents a logical disk that may  
be backed by anything from a partition on a local 
physical drive to a multidisk RAID volume exported  
by a networked storage array. In computer networking, 
a virtual private network (VPN) represents a logically 
isolated private network, where the isolation is 
provided using cryptographic methods to secure 
data that may in fact traverse the public Internet. 
In computer architecture, an IOMMU (I/O memory-
management unit) translates I/O-virtual memory 
addresses to corresponding physical memory 
addresses, making direct memory access by devices 
safe and efficient. Other examples of virtualization 

Doi:10.1145/2063176.2063194

 

 

 Article development led by 
         queue.acm.org

Decoupling a logical device from  
its physical implementation offers  
many compelling advantages.

By CaRL waLDsPuRGeR anD MenDeL RosenBLuM

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2063176.2063194&domain=pdf&date_stamp=2012-01-01


jAnUARY 2012  |   VOL.  55  |   nO.  1   |   CoMMuniCations of the aCM     67

Benefits
Many of the benefits of virtualized sys-
tems depend on the decoupling of a 
VM’s logical I/O devices from its physi-
cal implementation. Examples range 
from the ability to multiplex many VMs 
on the same hardware to advanced vir-
tualization features such as live migra-
tion and enhanced security. 

At the most basic level, decoupling 
enables time- and space-multiplexing 
of I/O devices, allowing multiple logi-
cal devices to be implemented by a 
smaller number of physical devices.  
Applications of virtualization such as 
server consolidation or running het-

erogeneous operating-system environ-
ments on the same machine rely on 
this feature. As inexorable trends cre-
ate ever more powerful hardware, its 
not surprising that much of it remains 
seriously underutilized. The ability 
to multiplex logical I/O devices onto 
physical ones allows both administra-
tors and automated systems to drive 
I/O devices at higher utilization and 
achieve better hardware efficiency. 
Much of virtualization’s rapid adop-
tion over the past decade can be at-
tributed to the significant cost savings 
resulting from such basic partitioning 
and server consolidation.

Decoupling provides for flexible 
mappings between logical and physi-
cal devices, facilitating seamless porta-
bility. By supporting mappings of logi-
cal I/O devices to physical devices with 
different yet semantically compatible 
interfaces, virtualization makes VMs 
portable, even across heterogeneous 
systems. The same VM image can be 
run on computers with different I/O 
devices and configurations, with the 
I/O virtualization layer providing the 
necessary conversion. 

Decoupling also enables popular 
VM features such as the ability to sus-
pend and resume a VM and the ability 
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to move a running VM between physi-
cal machines, known as live migra-
tion. In both of these applications, ac-
tive logical devices must be decoupled 
from physical devices and recoupled 
when the VM resumes after being 
saved or moved. 

This virtualization layer may also 
change mappings to physical devices, 
even when the VM itself does not move. 
For example, by changing mappings 
while copying storage contents, a VM’s 
virtual disks can be migrated transpar-
ently between network storage units, 
even while remaining in active use by 
the VM. The same capability can be 
used to improve availability or balance 
load across different I/O channels. For 
example, in a storage system with mul-
tiple paths between the machines and 
storage, the virtualization layer can 
rebind mappings to mask failures or 
avoid delays that might occur because 
of contention on paths. 

I/O virtualization provides a foot-
hold for many innovative and ben-
eficial enhancements of the logical 
I/O devices. The ability to interpose 
on the I/O stream in and out of a VM 
has been widely exploited in both re-
search papers and commercial virtu-
alization systems. 

One useful capability enabled by I/O 
virtualization is device aggregation, 
where multiple physical devices can be 
combined into a single more capable 
logical device that is exported to the 
VM. Examples include combining mul-

tiple disk storage devices exported as a 
single larger disk, and network chan-
nel bonding where multiple network 
interfaces can be combined to appear 
as a single faster network interface.  

New features can be added to exist-
ing systems by interposing and trans-
forming virtual I/O requests, transpar-
ently enhancing unmodified software 
with new capabilities. For example, a 
disk write can be transformed into rep-
licated writes to multiple disks, so that 
the system can tolerate disk-device fail-
ures. Similarly, by logging and tracking 
the changes made to a virtual disk, the 
virtualization layer can offer a time-
travel feature, making it possible to 
move a VM’s file system backward to an 
earlier point in time. This functionality 
is a key ingredient of the snapshot and 
undo features found in many desktop 
virtualization systems. 

Many I/O virtualization enhance-
ments are designed to improve system 
security. A simple example is running 
an encryption function over the I/O to 
and from a disk to implement trans-
parent disk encryption. Interposing 
on network traffic allows virtualization 
layers to implement advanced net-
working security, such as firewalls and 
intrusion-detection systems employ-
ing deep packet inspection.

Challenges
While virtualization offers many ben-
efits, it also introduces significant 
challenges. One is achieving good I/O 

performance despite the potential 
overhead associated with flexible in-
direction and interposition. Complex 
resource-management issues such as 
scheduling and prioritization are intro-
duced by multiplexing physical devices 
across multiple VMs, further impact-
ing performance. Another challenge is 
defining appropriate semantics for vir-
tual devices and interfaces, especially 
when faced with complex physical I/O 
devices or system-level optimizations.

In many systems, a nontrivial per-
formance penalty is associated with in-
direction. The same can be true for vir-
tualized I/O, since I/O operations must 
conceptually traverse two separate I/O 
stacks: one in the guest managing the 
virtual hardware; and one in the hyper-
visor managing physical hardware. The 
longer I/O path affects both latency 
and throughput, and imposes addi-
tional CPU load. 

Indeed, I/O-intensive workloads on 
some early virtualization systems suf-
fered a virtualization penalty larger 
than a factor of two. Since then, further 
research, optimizations, and hardware 
acceleration have reduced this penalty 
into the noise for an impressive set of 
demanding production workloads. 
Somewhat counterintuitively, virtual-
ized systems have even outperformed 
native systems on the same physical 
hardware, overcoming native scaling 
limitations by instead running several 
smaller VM instances in a scale-out 
configuration.

Figure 1 depicts the flow of an I/O 
request in a virtualized system. When 
an application running within a VM is-
sues an I/O request, typically by making 
a system call, it is initially processed 
by the I/O stack in the guest operating 
system, which is also running within 
the VM. A device driver in the guest is-
sues the request to a virtual I/O device, 
which the hypervisor then intercepts. 
The hypervisor schedules requests 
from multiple VMs onto an underlying 
physical I/O device, usually via another 
device driver managed by the hypervi-
sor or a privileged VM with direct ac-
cess to physical hardware. 

When a physical device finishes 
processing an I/O request, the two I/O 
stacks must be traversed again, but in 
the reverse order. The actual device 
posts a physical completion interrupt, 
which is handled by the hypervisor. The 

figure 1. an i/o request issued by an application is processed first by the guest operating 
system i/o stack running within the VM, and then by the hypervisor i/o stack managing 
physical hardware.
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hypervisor determines which VM is as-
sociated with the completion and noti-
fies it by posting a virtual interrupt for 
the virtual device managed by the guest 
operating system. To reduce overhead, 
some hypervisors perform virtual inter-
rupt coalescing in software, similar to 
the hardware batching optimizations 
found in physical cards, which delay 
interrupt delivery with the goal of post-
ing only a single interrupt for multiple 
incoming events.

Interposition can incur additional 
overhead by manipulating I/O requests 
such as inspecting network packets 
to perform security checks or encrypt-
ing disk writes transparently. In some 
cases, the interposition costs are neg-
ligible, especially compared with high-
latency operations such as I/O to tradi-
tional rotating media. In other cases, 
even making an extra in-memory copy 
of I/O data may be prohibitively expen-
sive—for example, for fast networks 
with extremely high packet rates. To 
improve performance, some hypervi-
sors parallelize portions of this pro-
cessing, offloading work to additional 
processor cores. Of course, when there 
is contention for CPUs, this leaves few-
er cores available for running VMs.

Managing resources in virtualized 
systems presents additional challeng-
es. Although each VM is presented with 
the illusion of having its own dedicated 
virtual hardware, in reality the hyper-
visor must multiplex limited physical 
hardware across multiple VMs of vary-
ing importance, mapping their virtual 
resources onto available physical re-
sources. At the most basic level, con-
tention for a physical device will result 
in scheduling delays for some VMs. At 
a minimum, the hypervisor must pre-
vent VMs from monopolizing resourc-
es and denying service to others.

More generally, the hypervisor 
should provide some measure of 
performance isolation or quality-of-
service controls to reflect the relative 
importance or absolute requirements 
of diverse VM workloads. The abil-
ity to express resource-management 
policies is especially important when 
physical resources are shared across 
multiple users or organizations, as is 
common in multitenant cloud-com-
puting environments. Several hypervi-
sors support a relative weight control, 
where a VM’s allocation is directly pro-

portional to its weight. Some also pro-
vide absolute reservation and limit set-
tings, which bound a VM’s minimum 
and maximum allocation, regardless 
of system load.

For I/O devices that can be accessed 
concurrently by VMs on different hosts, 
such as networked storage arrays, re-
source management requires distrib-
uted algorithms to schedule requests 
fairly and efficiently. Virtualization 
platforms have only recently started of-
fering sophisticated solutions capable 
of providing end-to-end quality of ser-
vice for VM I/O bandwidth and latency.

Scheduling may also impact VM 
performance in subtler ways. For ex-
ample, contention for CPU resources 
can cause problems for TCP network-
ing performance. TCP connections 
rely on accurate round-trip time (RTT) 
estimates in order to perform flow 
control and adjust window sizes ap-
propriately. A VM, however, may be de-
scheduled for tens or even hundreds 
of milliseconds while a packet is pend-
ing. As a result, CPU time-multiplexing 
can distort a VM’s RTT values, caus-
ing its congestion windows to grow 
too slowly, which degrades through-
put significantly. To solve this prob-
lem, some researchers have proposed 
offloading more TCP functionality to 
the hypervisor. Another option would 
be to present VMs with virtual network 
interface controller (NIC) hardware 
that supports optional TCP Offload 
Engine (TOE) functionality, as found 
in some physical NICs.

The very idea of adding TCP offload 
capabilities to a virtual NIC highlights 
the difficulty of choosing appropriate 
semantics for virtual hardware. This 
is especially true for devices with even 
more complex interfaces, such as mod-
ern graphics cards. At one extreme, 
virtual hardware can have an interface 
identical to a physical device. This ap-
proach has the compelling advantage 
of compatibility with all software that 
already supports (or will support) the 
physical device. Unfortunately, such 
transparency usually comes at the cost 
of emulating a fairly complex virtual 
device interface that was not designed 
to support virtualization efficiently. At 
the other extreme, virtual hardware 
can have a completely new hypervisor-
specific interface, designed explicitly 
to be simple and efficient.

i/o virtualization 
provides a foothold 
for many  
innovative 
and beneficial 
enhancements  
of the logical  
i/o devices. 
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A related challenge is ensuring that 
virtualization faithfully preserves the 
semantics that software expects of 
physical devices. For example, some 
virtualization systems boost I/O per-
formance by leveraging a hypervisor-
level buffer cache between the VM and 
physical storage. While caching reads 
does not introduce any problems, cach-
ing writes would violate the durability 
semantics relied upon by guest file sys-
tems, databases, and other software. In 
a native, unvirtualized system, an I/O 
completion indicates that a write has 
been committed.  Hypervisors must use 
a write-through cache to preserve this 
property, although some provide an ex-
plicit option to trade off safety for per-
formance by relaxing this constraint.

Direct memory access (DMA) il-
lustrates additional safety and perfor-
mance issues. It enables an I/O device 
to read and write host RAM directly 
without involving the CPU, which 
is critical for achieving high-perfor-
mance I/O rates. Unfortunately, giving 
devices the ability to use DMA to reach 
arbitrary physical memory locations 
is risky, especially since the majority 
of operating-system bugs result from 
misbehaving device drivers. As discussed 
in the next section, virtualization systems 
can ensure strict isolation between VMs 
by employing various approaches, such as 
leveraging hardware IOMMU functional-
ity at both the guest and hypervisor levels. 

approaches
The classic way of implementing I/O 
virtualization is to structure the soft-
ware in two parts: an emulated virtual 
device that is exported to the VM and a 
back-end implementation that is used 
by the virtual-device emulation code 
to provide the semantics of the device. 
Modern hypervisors support an I/O 
virtualization architecture with a split 
implementation, as shown in Figure 
2, where a virtual machine can select 
among different virtual device inter-
face emulation front-ends as well as 
multiple different backend implemen-
tations of the device.  For example, the 
virtual machine can be configured with 
an IDE, a SCSI, or a paravirtualized disk 
device that is implemented using a file, 
a local disk, or a storage area network 
(SAN). Here, we describe the way these 
are implemented in modern virtualiza-
tion systems and discuss some of the 

available optimization options. 
As a concrete example, consider a 

legacy PC I/O device such as an IDE 
disk. The operating system in the VM 
would call a device driver to launch 
disk read or write requests. The device 
driver would include OUT instruc-
tions that program the operation type, 
device number, disk-sector number, 
length, and buffer-memory location 
for the operation. The driver assumes 
that the device will use DMA to trans-
fer the contents between memory and 
the disk device and then raise an inter-
rupt when it is done. For the emulated 
device to work correctly, the emula-
tion software must catch and interpret 
the OUT instructions to determine 
the correct operation and its argu-
ments; perform an emulation of the 
operation by storing or fetching the 
requested block of storage, using the 
emulation of the architecture’s DMA 
capability to read or write memory; 
and finally raise the proper interrupt 
signal on the VM to notify the driver 
that the request is finished. 

While the device emulation code 
is specific to the particular device be-
ing emulated (for example, an IDE 
disk), the semantics of the operations 
being performed are general and fre-
quently constructed so that the same 
device emulation can access multiple 
different back-end implementations. 
For example, with virtual disks, the 
back-end implementation could be 
as simple as forwarding the request 
untransformed to a native physical 
IDE controller or as complex as imple-
menting the storage for the virtual 
disk as a file in a host operating-sys-
tem file system, as in many desktop 
virtualization products. In the latter 
case, the back end must generate host 
operating-system file-system read and 
write operations for the file contain-
ing the virtual disk contents in order 
to perform emulated virtual disk-sec-
tor read and write operations. 

A pluggable structure for back-end 
implementations makes it easy to gen-
erate new capabilities for virtual devic-
es. A disk-storage back end can imple-
ment an emulated CD-ROM device for 
a VM simply by accessing a file contain-
ing its ISO (International Organization 
for Standardization) image. Similarly, 
the snapshot and undo capabilities in 
modern virtualization systems can be 

the classic way 
of implementing 
i/o virtualization 
is to structure the 
software in two 
parts: an emulated 
virtual device 
exported to  
the VM and  
a back-end 
implementation 
used by  
the virtual-device 
emulation code  
to provide  
the emantics  
of the device. 
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implemented by logging rather than 
overwriting a virtual-disk file, enabling 
the virtualization layer to control which 
version of the disk is visible to the VM. 

Along with flexibility and innovative 
features come potential performance 
penalties, which can vary greatly. A 
back end optimized for a server ma-
chine that efficiently shuttles emu-
lated reads and writes to a portion of a 
local disk may have very low virtualiza-
tion overheads. In contrast, the penalty 
may be relatively large for a desktop-
virtualization back end where the data 
is stored in an encrypted file on a net-
work file system used by the host oper-
ating system. Not only would every read 
and write request traverse the file sys-
tem and networking code of the host 
operating system and the network file 
system, but additional encryption and 
decryption overhead would also be in-
curred for each sector.  

Much current research in I/O vir-
tualization is focused on either new 
interposition functionality that solves 
some problem or optimizations for 
reducing the overheads associated 
with the virtualization. Optimization 
has been an especially important goal 
in server virtualization and consolida-
tion, where overheads directly impact 
metrics such as the number of VMs 
supported per server. Beyond back-end 
optimizations, reducing I/O-virtual-
ization overhead requires decreasing 
virtual-device emulation costs. Several 
recent optimizations have tried exactly 
this using either software or modifica-
tions to the I/O device hardware. 

One of the software techniques for 
lowering emulation costs is to reduce 
the number of trap-and-emulate op-
erations the hypervisor is required to 
do to perform an I/O operation.  For ex-
ample, the legacy PC IDE interface uses 
eight-bit OUT instructions to commu-
nicate with the disk controller. Com-
municating the sector number, buffer 
address, and length requires multiple 
such instructions, causing repeated 
traps into the hypervisor to run the de-
vice emulation code. Using the driver 
for an alternative disk device such as 
a SCSI disk can achieve the same func-
tionality with far fewer traps, greatly re-
ducing the emulation overheads. 

Even further reduction can be 
achieved by optimizing the communi-
cation between the VM software and 

end implementation overheads. 
Although pass-through mode can 

remove I/O virtualization overheads, 
it introduces several limitations and 
implementation challenges that have 
slowed its deployment. Aside from 
the obvious limitation that each pass-
through device can be used by only a 
single VM, pass-through forms a cou-
pling between the hardware and the 
VM. As a result, many of the portability 
benefits of virtualization are lost, along 
with key benefits such as live migration 
and features that depend on the ability 
to interpose on I/O. 

One of the biggest challenges of 
pass-through mode affects devices 
that use DMA. The fundamental 
problem is that the driver in the VM 
will program device DMA using the 
guest’s notion of memory addresses, 
which differ from the real memory 
addresses in which the VM’s memory 
resides. This is not only incorrect, but 
also a large safety and security prob-
lem since the device could read and 
write memory potentially belonging 
to the hypervisor or some other VM. 
To make this work, the VM’s driver 
must translate memory addresses to 
use the correct real memory before 
programming them into the device. 
This exposes the driver to the details 
of hypervisor memory virtualization 
and still has safety problems since 
bugs in the driver can result in incor-
rect translations. 

To eliminate both the limitations 
and the challenges of pass-through, de-
vice builders have modified their hard-
ware to be aware of the virtualization 
layer. To handle the limitation of exclu-
sive pass-through-only devices, such 
virtualization-aware hardware exports 

the device emulation. In modern op-
erating-system environments such as 
Windows and Linux, it is possible to in-
stall device drivers that communicate 
the request’s arguments to the hyper-
visor’s device emulation code directly, 
with minimal overhead. This approach 
of using virtual hardware optimized 
for the virtualization layer rather than 
matching any particular real device 
is referred to as paravirtualization. In 
practice, most modern virtualization 
platforms support an emulated legacy 
device for compatibility, as well as pro-
viding an optional paravirtual device 
for higher performance.

As an example, a paravirtualized 
disk interface could have the device 
emulation code accept commands via 
a memory segment shared between 
the driver and the emulation, allowing 
communication of commands with 
practically zero overhead. The emula-
tion code simply passes the command 
to the optimized back-end implemen-
tation. Examples include Xen’s virtual 
block-device front-end driver and VM-
ware’s PVSCSI guest disk driver.

For an I/O device used by only a sin-
gle VM, where the back-end implemen-
tation is mostly passing through the 
driver commands from the VM to the 
device, it is tempting to pass through 
the device directly, assigning it to the 
VM exclusively. Consider the example 
of a high-performance NIC that is used 
by only one of the VMs running on a 
computer. It is relatively easy to con-
figure the CPU virtualization so the x86 
instructions that talk to the device can 
be connected directly to the device and 
incur zero I/O virtualization overheads. 
This pass-through mode can eliminate 
both the device emulation and back-

figure 2. Modern hypervisors split device virtualization into a front-end emulation and  
a backend implementation. for example, virtual machines can be configured with iDe,  
sCsi, or paravirtualized disk devices that are implemented either as a file, a local disk,  
or a san storage area network. the emulated and physical devices, such as the sCsi  
front-end and local sCsi back-end, may differ in size and other attributes.
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multiple interfaces, each of which can 
be attached to a different VM. As a re-
sult, each VM is given its own directly 
accessible pass-through copy of the 
device. For example, a virtualization-
aware NIC could have many personali-
ties that look and act as if many sepa-
rate NICs had been directly mapped 
into different VMs. 

Additional hardware support is 
needed to address the challenges of 
performing DMA operations directly 
involving VM memory. A memory man-
agement unit is employed to map the 
DMA operation’s memory addresses 
into the correct locations in the VM’s 
memory. This mapping hardware—the 
IOMMU—is programmed for each VM 
attached to a device with the mappings 
of where the VM resides in memory. 
Each DMA request is run through the 
IOMMU, which routes the request to 
or from the correct location in the real 
machine memory or generates an error 
if the request is not valid. The IOMMU 
allows the driver in the VM to program 
device DMA using its virtualized notion 
of memory addresses, while still allow-
ing the hypervisor to decide where VM 
memory is actually located in physical 
machine memory. The IOMMU also 
provides a level of safety, ensuring that 
even buggy driver software in the guest 
cannot generate DMA accesses to loca-
tions outside the VM. 

Although IOMMUs can safely and 
efficiently allow virtualization-aware 
I/O devices to access the memory of 
a virtual machine directly, there are 
implications for some of the more so-
phisticated memory virtualization op-
erations in modern hypervisors that 
rely upon dynamic page remapping. 
Consider features such as overcom-
mitting memory, where the hypervisor 
can reclaim RAM via techniques such 
as demand-paging VM memory to sec-
ondary storage; memory compression; 
or transparent memory sharing where 
identical pages can be de-duplicated 
by sharing them read-only between 
multiple virtual machines. These fea-
tures require that certain accesses to 
VM memory take faults and invoke 
hypervisor actions before they are al-
lowed to proceed. DMA devices need 
to respect this, and hence the devices 
need to support something similar to 
page faults on DMA operations where 
the hypervisor is invoked before the 

device multiplexing is used to consoli-
date different workloads onto the same 
physical hardware. Defining clean inter-
faces and appropriate semantics for vir-
tual devices is also challenging.

I/O virtualization remains an active 
area of research and development in 
both academia and industry. Although 
we focused here on systems issues 
from the perspective of an individual 
physical machine, the broader context 
of I/O virtualization includes an enor-
mous range of work on distributed sys-
tems and the fabrics that connect their 
virtual and physical components. The 
increasing prevalence and commer-
cial success of systems based on virtual 
machines is certain to fuel demand for 
new virtualization optimizations and 
I/O capabilities.  
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DMA is permitted to finish. The ability 
to tolerate arbitrary delays on DMA op-
erations can have a much deeper im-
pact on the changes needed to make 
an I/O device virtualization-aware. 

While production hypervisors em-
ploy hardware IOMMUs and other 
hardware-enforced memory-mapping 
techniques to guarantee isolation be-
tween VMs, they have not yet included 
IOMMUs in the virtual hardware pre-
sented to VMs. A virtual IOMMU (vIOM-
MU) would allow a guest operating 
system to defend against its own buggy 
device drivers, as in a native system. 

Recently, researchers have developed 
new IOMMU emulation techniques 
for efficiently providing vIOMMUs to 
guests. Even more significantly, the 
same approach facilitates a more flexi-
ble form of device pass-through, where a 
VM is allowed to interact with a directly-
assigned I/O device without hypervisor 
intervention. Since the guest exposes 
which regions of its memory are current-
ly involved in DMA operations to the 
vIOMMU, the hypervisor is able to mod-
ify mappings for other memory regions 
safely. By interposing only on vIOMMU 
operations, it is possible to achieve near-
native I/O performance while preserving 
the hypervisor’s ability to manage, re-
map, and overcommit memory. 

Conclusion
Decoupling a logical device from its 
physical implementation offers many 
compelling advantages. A single physi-
cal device can be multiplexed, allowing 
it to act as many virtual devices, improv-
ing hardware utilization. Abstracting 
away details about specific hardware 
and physical location makes seamless 
migration possible. The level of indi-
rection between virtual and physical 
also provides a convenient hook for in-
terposing on I/O operations transpar-
ently, enabling new capabilities such 
as replication, load balancing, encryp-
tion, and security checks.

A key challenge in I/O virtualization 
is achieving these benefits with mini-
mal overhead. A number of clever soft-
ware and hardware approaches have 
been devised to achieve high-perfor-
mance indirection and interposition, 
including paravirtualization and virtu-
alization-aware devices. Resource-man-
agement issues, such as scheduling and 
prioritization, become important when 




