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Abstract

We present a flexible object-oriented framework for spec-
ifying modular resource management policies in concurrent
systems. The framework generalizes the basic abstractions
we originally developed for lottery scheduling [16]. It is in-
dependent of the underlying proportional-share scheduler;
a variety of probabilistic and deterministic algorithms can
be used, including a min-funding revocation algorithm that
we introduce for space-shared resources. The framework
supports diverse resources and policies, including both pro-
portional shares and guaranteed reservations. A repayment
mechanism prevents allocation distortions caused by trans-
fers of resource rights. Key framework concepts are analo-
gous to features of object-oriented languages.

1. Introduction

Effective resource management requires knowledge of
both user preferences and application-specific performance
characteristics. Unfortunately, traditional operating systems
centrally manage machine resources within the kernel [5],
affording clients only crude control throughad hoc inter-
faces that inhibit modularity. For example, dynamic priority
schedulers are difficult to understand, provide poor control
over service rates, and violate modular abstraction princi-
ples [2, 6, 7, 16].

This paper advocates a radically different approach to
computational resource management.Ticketsare first-class
objects that represent resource rights, allowing clients to
express a wide range of resource management policies.
Currenciesabstract collections of tickets to permit modu-
lar composition, allowing policies to be expressed conve-
niently at various levels of abstraction. Resource rights vary
smoothly with easily-understood ticket allocations, simpli-
fying the specification of custom policies.

The framework described here generalizes the basic ab-
stractions we originally developed for lottery scheduling
[16]: it is independent of the underlying proportional-share

scheduling algorithm, and it incorporates a novelrepayment
mechanism to prevent distortions of service rates caused
by ticket transfers. We also describe a novel determin-
istic scheduling algorithm –min-funding revocation– for
space-shared resources, sketch several extensions to the ba-
sic framework, and present numerous examples that demon-
strate the framework’s versatility.

2. Framework

Our framework consists of two objects:tickets, which
encapsulate resource rights, andcurrencies, which flexibly
name, share, and protect collections of tickets.

2.1. Tickets

Resource rights are encapsulated by first-class objects
called tickets. Tickets can be issued in different amounts;
a single physical ticket may represent any number of logi-
cal tickets. Tickets are owned byclients that consume re-
sources. A client isactivewhile it is competing to acquire
more resources. An active client is entitled to consume re-
sources at a rate proportional to its ticket allocation. Thus,
ticket allocations determine service rates for timesharedre-
sources, and storage capacity for space-shared resources.

In general, tickets representrelativerights that depend on
the total number of tickets contending for a resource. Client
allocations degrade gracefully in overload situations, and
active clients proportionally benefit from extra resources
when some allocations are underutilized. In the worst case,
an active client’s share is proportional to its share of tick-
ets in the system. Thus,absoluterights can be specified by
fixing the total supply of tickets, ensuring that each ticket
represents a guaranteed minimum resource fraction.

2.2. Ticket Transfers

The most basic ticket operation is a direct redistribu-
tion of resource rights via aticket transferbetween clients.
Transfers are particularly useful in any situation where one



client blocks waiting for other clients: the waiting clientcan
transfer some or all of its tickets to the others, allowing them
to acquire more resources and hence complete faster.

For example, the client of an RPC can transfer tickets
to the server, which then executes with the resource rights
of the client, and returns those rights during the RPC reply.
Similarly, a client waiting to acquire a lock can temporarily
transfer tickets to the current lock owner, solving the con-
ventional priority inversion problem in a manner similar to
priority inheritance [12]. Unlike priority inheritance, trans-
fers from multiple clients are additive. A client can also
split transfers across several clients on which it is waiting
(e.g., a writer waiting on multiple readers).

Ticket transfers are capable of specifyingany ticket-
based resource management policy, since an arbitrary distri-
bution of tickets to clients can be effected. However, trans-
fers are often too low-level to be convenient, since they im-
pose aconservationconstraint: tickets can be redistributed,
but they cannot be created or destroyed.

2.3. Transfer Repayment

A temporary ticket transfer can be viewed as either ado-
nationor a loan of the resources acquired using the ticket
during the transfer period. For example, when an RPC
client transfers tickets to a server, it is appropriate to view
the transfer as a donation, since the resources acquired with
the client’s tickets are used on its behalf. However, tickets
transferred from a client blocked on a lock to its owner are
better viewed as a loan that must berepaid, since the lock
owner is not computing on behalf of the client.

We simulated a system usingstride schedulingto imple-
ment proportional sharing for both processor time and lock
access, and studied ticket transfers with and without repay-
ment. Without repayment, computation rates are distorted
to favor lock holders; with repayment, they closely approx-
imate the specified rates [15].

In economic terms, a ticket behaves like a constant mon-
etary income stream. We are currently investigating the
general problem of allowing limitedaccumulationof re-
source rights without sacrificing accuracy guarantees.

2.4. Ticket Inflation and Deflation

Ticket inflationanddeflationare alternatives to explicit
ticket transfers. Client resource rights can be escalated by
creating more tickets, inflating the overall supply of tickets.
Similarly, client resource rights can be reduced by destroy-
ing tickets, deflating the supply. Inflation and deflation are
useful among mutually trusting clients and are often easier
to use than transfers, since they permit resource rights to
be reallocated without explicitly reshuffling tickets among
clients. For example, a process can allocate resource rights
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Figure 1. Ticket and Currency Objects.

equally to subprocesses simply by creating and assigning a
fixed number of tickets to each subprocess, and destroying
the tickets owned by each subprocess when it terminates.

Uncontrolled ticket inflation is dangerous, since a client
can monopolize a resource by creating a large number of
tickets. Viewed from an economic perspective, inflation is
a form of theft, since it devalues the tickets owned by all
clients. Because inflation can violate desirable modularity
properties, it must be either prohibited or strictly controlled.

2.5. Currencies

The desirability of inflation and deflation hinges ontrust.
Trust implies permission to appropriate resources without
explicit authorization. Acurrencydefines a modulartrust
boundarythat contains the effects of ticket inflation. Each
ticket is extended to include a currency in which it is denom-
inated, allowing resource rights to be expressed in units that
are local to each group of mutually trusting clients. Each
currency should maintain permissions (e.g., access control
lists) that determine which clients have the right to create
and destroy tickets denominated in that currency.

Figure 1 depicts key aspects of ticket and currency ob-
jects. A ticket consists of an amount denominated in some
currency, denoted byamount.currency. A currency has a
unique name, isfundedby a set ofbacking ticketsdenom-
inated in more primitive currencies, and maintains a list of
issued tickets and the total number that are active. Infla-
tion is locally contained by maintaining anexchange rate
between each currency and a commonbasecurrency that is
conserved. Tickets denominated in different currencies are
compared by first converting them into the base currency.

One useful currency configuration is a hierarchy of cur-
rencies. In general, currency relationships may form any
DAG. Figure 2 depicts an example currency graph; each
user and task has an associated currency. Two users, Al-
ice and Bob, are competing for computing resources. Bob’s
task2is blocked on a lock held by Alice’stask1, and trans-
fers its funds to expedite the lock’s release. The current
values in base units for the runnable tasks aretask1= 4000,
andtask3= 1000.
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Figure 2. Example Currency Graph.

2.6. Currencies Resemble Classes

Currency abstractions for resource rights resemble data
abstractions for data objects. A data abstraction defines an
abstraction barrierbetween an abstract data type and its un-
derlying representation [9] that both hides and protects the
representation. Normally, access is allowed only through
exported operations; however, the operations themselves
can manipulate the representation. A currency defines a re-
source management abstraction barrier that provides simi-
lar properties for resource rights: clients are generally un-
trusted, and only those with explicit permission are allowed
to distribute resource rights within a currency.

Resource-right relationships structured by currencies
also resemble object relationships structured by classes in
object-oriented languages with multiple inheritance. A
class inherits its behavior from a set of superclasses; sim-
ilarly, a currency inherits its resource rights from a set
of backing tickets in more primitive currencies. Tickets,
which are instances of currencies, are also similar to ob-
jects, which are instances of classes. However, issuing a
new ticket dilutes the value of all existing tickets denomi-
nated in a currency, while the instances of a class need not
affect one another.

3. Proportional-Share Algorithms

The general framework presented above can be imple-
mented by any proportional-share scheduling algorithm.
However, efficient low-level support for dynamic changes
in the set of active clients and their allocations is required to
implement higher-level framework operations. Appropriate
algorithms also depend on the resource to be allocated.
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Figure 3. Min-Funding Revocation.

3.1. Time-Shared Resources

For time-shared resources, such as processor time, I/O
bandwidth, and lock access, it is impossible to achieve ideal
behavior due to quantization. A key characteristic that dis-
tinguishes different algorithms is accuracy. Our randomized
lottery schedulingalgorithm has expectedO(pna) error af-
terna allocations [16]. Deterministic algorithms based on
virtual timehave greatly improved accuracy. A virtual clock
is effectively associated with each client, and ticks at a rate
inversely proportional to the client’s ticket allocation.A re-
source allocation is performed by selecting the client with
the minimum virtual clock time.

Our stride schedulingapproach generalizes virtual-time
flow-control algorithms designed for networks [3, 17, 11]
for use with other time-shared resources; hierarchical stride
scheduling exhibitsO(lgnc) error fornc clients, indepen-
dent of na [15]. Optimal deterministic algorithms, such
as EEVDF [13] and WF2Q [1], bound the error to asin-
gle quantum by performing an additional check that makes
clients which are ahead of schedule ineligible for the cur-
rent allocation. The precision of these algorithms makes
them particularly attractive for supporting real-time clients.

3.2. Space-Shared Resources

We have also developed mechanisms for allocating divis-
ible space-shared resources, such as blocks in a filesystem
buffer cache or resident VM pages [15]. Dynamic space-
sharing is based on resource revocation. When a client de-
mands more space, a replacement algorithm selects a vic-
tim client that relinquishes some of its previously allocated
space. Our deterministicmin-funding revocationalgorithm
[15] dynamically converges to proportional-share alloca-
tions approximately twice as fast as our earlierinverse lot-
tery approach [16].

Performing a revocation is simple: a resource unit is re-
voked from the client expending the fewest tickets per re-
source unit, compared with other clients. As its name sug-
gests,min-funding revocationalso has a clear economic in-
terpretation. The number of tickets per resource unit can



be viewed as its price; revocation reallocates resource units
away from clients paying a lower price to clients willing to
pay a higher price. Thus, resource consumption adaptively
expands and contracts as a function of current contention
levels. A client with a constant number of tickets can in-
crease its consumption when contention falls, and its con-
sumption will decrease due to revocations when contention
rises. When a client loses a resource unit due to a revo-
cation, its ticket to resource unit ratio increases, makingit
more resistant to future revocations. Similar reasoning ap-
plies in the opposite direction for expansion.

Figure 3 presents simulation data showing how resource
allocations evolve over time given initial ticket and space
allocations. The graph on the left plots resource allocations
over time for three clients with a 3 : 2 : 1 ticket ratio, starting
with equal space allocations. All clients issue allocationre-
quests at the same rate, and their resource levels converge to
the desired levels after approximately 300 allocations. The
graph on the right shows space allocations over time for two
clients with a 2 : 1 ticket ratio. The clients start with a 1 : 2
resource allocation, the reverse of their specified propor-
tional shares. Although the second client issues allocation
requests at twice the rate of the first client, resource shares
still rapidly converge to the desired levels.

3.3. Framework Implementation

We have implemented the complete framework for pro-
cessor timesharing in the Mach kernel, using an underly-
ing lottery scheduler [16, 15]. The implementation em-
ploys alazystrategy that defers converting ticket values into
common base currency units until their values are actually
needed. An alternativeeagerstrategy would perform cur-
rency conversions immediately.

4. Framework Extensions

This section introduces extensions to the core framework
that support connections with the external economy and dif-
fering notions of fairness.

4.1. Exhaustible Tickets

In the basic framework, tickets are not consumed when
used to acquire resources.Exhaustible ticketsgeneralize
tickets by adding an expiration time limit; this is useful if
tickets are exchanged for real money in the external econ-
omy. For example, a client could spend more money to ac-
quire more tickets, thus obtaining the right to faster service;
each ticket could be valid for a specified amount of time or
usage, thus requiring each client to make periodic payments
for the right to continue to use a resource.

Exhaustible tickets can be defined using several differ-
ent kinds of time limits, leading to different resource pricing
schemes. Assume that the price of a ticket is proportional to
its value in base tickets. An exhaustible ticket based onac-
tive competitiontime can compete for a limited number of
allocations, and has an economic interpretation in which the
monetary price of a resource is proportional to the number
of tickets competing for it. As a result, the amount paid per
unit of resource consumption varies with contention, and
each client pays an amount proportional to its ticket alloca-
tion during each unit of time that it is active.

A slightly different policy arises when tickets expire af-
ter a fixed period ofelapsedtime. This implements a pric-
ing policy that charges for theopportunityto compete for
resources, regardless of actual usage. This policy is simi-
lar to the one above based on active competition time, but
prevents clients from buying tickets and then holding them
in reserve. As a result, the actual monetary price for a
ticket can be easily varied based on real time (e.g., time-of-
day), providing an additional variable to control the mone-
tary price for a resource. This makes it easy for a service
provider to limit the total number of tickets that can com-
pete for a resource in a given time period.

Another option is to base expirations onresource con-
sumptiontime, so that a ticket represents a fixed quantity
of resource usage, consumable at a rate that depends on
contention. This provides clients with more predictable
monetary prices for resources, since the amount of money
paid for a unit of resource no longer varies with contention
(though the service rate for a given client does).

4.2. Fairness Time Scale

The basic framework assumes aninstantaneousform of
fairness in which the resource consumption rates ofactive
clients are proportional to their ticket allocations. Some-
times it may be desirable to provide atime-averagedform
of sharing based on actual resource usage, measured over
some time interval. For example, if a client is temporarily
inactive, a scheduler that provides time-averaged fairness
would allow it to “catch up” when it becomes active. Note
that a client could monopolize resources while catching up;
this is not permitted by instantaneous fairness.

The framework does not require any modifications to
support time-averaged fairness. However, since appropri-
ate time-averaging intervals vary across applications, weare
currently exploring efficient low-level implementation tech-
niques to support per-currency fairness time scales.

5. Example Policies

A wide variety of policies can be specified using the gen-
eral resource management framework. This section exam-
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Figure 4. Timesharing and Reservations.

ines several different resource management scenarios, and
demonstrates how appropriate policies can be specified.

5.1. Resource Shares

As mentioned earlier, tickets generally specifyrelative
resource shares. However, if the total number of tickets in a
system is fixed, then tickets also specifyabsoluteresource
shares. Absolute shares can be specified by issuing tickets
in anyhard currency, defined as a currency that maintains a
fixed exchange rate with a conserved base currency.

5.2. Timesharing/Real-Time Integration

Currency configurations may contain both timesharing
clients that adapt to changes in resource availability, and
real-time clients that demand resource reservations (e.g.,
guaranteed cycles or pinned pages). Each timesharing client
is allocated a relative resource share by inflating asoftcur-
rency to issue tickets to the client, thus diluting the resource
shares of other timesharing clients. Each real-time clientis
allocated an absolute resource share by issuing it new tick-
ets in ahardcurrency, but only after adding backing tickets
to the currency so that hard ticket values remain constant.

Figure 4 depicts an example configuration with both real-
time and timesharing clients. Initially,hard funds real-time
clientR1with a guaranteed 20% reservation, andsoftfunds
timesharing clientT1. When additional clients are added
(shown in gray with italic side annotations),hard is inflated
to fundR2 with a 10% reservation, and 100.baseis trans-
ferred fromsoft to maintain a constanthard: base= 1 : 10
exchange rate. In contrast, whensoft is inflated to fundT2,
T1’s share decreases.

5.3. Progress-Based Funding

Ticket inflation and deflation provide a convenient way
for concurrent clients to implement resource management
policies. For example, cooperative (AND-parallel) clients
can independently adjust their ticket allocations based upon
application-specific estimates of remaining work (as in the
Monte-Carlo example in [16, 15]). Similarly, competitive
(OR-parallel) clients, such as heuristic searches or specu-
lative computations, can independently adjust their alloca-
tions based on application-specific progress metrics.

5.4. Priority Emulation

Absolute priorities can beapproximatedby a series of
currenciesc1, : : : , cn configured such that currencyci�1
is backed by a single ticket in currencyci, and a client
with emulated priorityi is allocatedk tickets in currencyci. Each client with priorityi will be servicedk times more
frequently than the set of all clients with lower priority, ap-
proximating a strict priority ordering.

5.5. Interactive Applications

Interactive systems must rapidly focus limited resources
on those tasks that are currently important [4, 14]. Impor-
tance can be represented by ticket allocations, which could
be controlled with a simple GUI, and also by associating
tickets with the input focus to accelerate applications in re-
sponse to mouse movements.

Many interactive systems, including databases and the
Web, use servers to process requests from a wide variety of
clients with different service demands, reflecting inherent
importance or monetary premiums for better service. Tick-
ets could specify importance, and ticket transfers would en-
sure that clients get the service they request.

5.6. System Administration

Engineering and scientific centers need to allocate shared
resources among users and applications of varying impor-
tance [7]. Many corporations must also manage scarce com-
puting resources, such as overloaded network firewalls.

System administrators can create currencies for different
groups, which can subdivide their allocations among users
autonomously. Since currency relationships need not follow
a strict hierarchy, users may belong to multiple groups, and
one group can even subsidize another.

5.7. Dynamic Resource Tradeoffs

Multipleheterogeneous resources must be managed con-
currently. One approach is to use resource-specific tickets,



each valid only for a single resource. Alternatively, uni-
form tickets could be allowed to compete for any resource,
permitting clients to make quantitative cost-benefit trade-
offs among different resources.

6. Related Work

As mentioned earlier, traditional operating systems pro-
vide only crude control over resource management. For ex-
ample, dynamic priority schedulers, which are the dominant
paradigm for managing processor time in modern operat-
ing systems, are complex,ad hoc, and hard to understand
[2, 7, 6]. Resource rights do not vary smoothly with prior-
ities. Priority mechanisms also violate modular abstraction
principles: when separately developed modules are com-
bined, the internal priority values in each must be exposed
to understand resource allocation in the resulting system.
For other resources, such as filesystem buffers, disk band-
width, and lock access, the control – if any – is equally poor.

Real-time schedulers also lack modularity, and impose
onerous restrictions on applications. However, a higher-
level processor capacity reserveabstraction [10] provides
limited control of processor usage across protection bound-
aries, similar to a restricted form of ticket transfers.

Fair-share schedulers allocate resources to groups or
users in proportion to the number ofsharesthey have been
assigned, providing time-averaged fairness over long peri-
ods of time [8, 7]. Shares are typically assigned directly
to individual users or groups; hierarchical share allocation
has also been implemented [8]. However, shares are not
treated as first-class objects, preventing the specification of
more general resource management policies. Prior work on
proportional-share schedulers that implement instantaneous
fairness is outlined in Section 3.

7. Conclusions

In this paper we have described a new resource manage-
ment framework that generalizes the abstractions we origi-
nally developed for lottery scheduling [16]. The framework,
based on tickets and currencies, is simple yet flexible, is in-
dependent of the underlying proportional share scheduling
algorithm, supports modular composition of custom poli-
cies, and provides an easy-to-understand relationship be-
tween user specifications and resulting allocations.

In addition to generalizing the framework, we have pre-
sented a novelmin-funding revocationalgorithm for space-
shared resources that provides fast convergence to speci-
fied shares, along with arepaymentmechanism for ticket
transfers that prevents service rate distortions. We also
sketched two other potential extensions – exhaustible tick-
ets and time-averaged fairness – and presented numerous
examples that demonstrate the versatility of the framework.
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