
PABST: Proportionally Allocated Bandwidth
at the Source and Target

Derek R. Hower
Qualcomm Technologies, Inc.
dhower@qti.qualcomm.com

Harold W. Cain Carl A. Waldspurger
Qualcomm Datacenter Technologies, Inc.
{tcain, c carlw}@qti.qualcomm.com

Abstract—Higher integration lowers total cost of ownership
(TCO) in the data center by reducing equipment cost and
lowering energy consumption. However, higher integration also
makes it difficult to achieve guaranteed quality of service (QoS)
for shared resources. Unlike many other resources, memory
bandwidth cannot be finely controlled by software in existing
systems. As a result, many systems running critical, bandwidth-
sensitive applications remain underutilized to protect against
bandwidth interference.

In this paper, we propose a novel hardware architecture
allowing practical, software-controlled partitioning of memory
bandwidth. Proportionally Allocated Bandwidth at the Source
and Target (PABST) precisely controls the bandwidth of appli-
cations by throttling request rates at the source and prioritizes
requests at the target. We show that PABST is work conserving,
such that excess bandwidth beyond the requested allocation will
not go unused. For applications sensitive to memory latency,
we pair PABST with a simple priority scheme at the memory
controller. We show that when combined, the system is able to
lower TCO by providing performance isolation across a wide
range of workloads, even when co-located with memory-intensive
background jobs.

I. INTRODUCTION

In the data center, workload consolidation (also called
co-location) reduces the total cost of ownership (TCO) by
performing the same amount of work with fewer machines [1],
[2], [3], [4], [5], [6], [7]. However, shared resource contention
on a consolidated machine can also reduce the performance
of user-facing, latency-critical workloads [8], [6]. Applications
may slow down enough to violate the service-level agreements
(SLAs) that drive profit, leading operators to intentionally
under-utilize machines (10-50% utilization [9]) despite the
operational cost benefits [10], [2]. That intentional under-
utilization will be increasingly difficult to justify going forward
as core counts continue to rise (24-48 core single socket
systems are now available or announced from Qualcomm Dat-
acenter Technologies, Inc. [11], Intel [12], and Cavium [13]).

To achieve the cost benefits of consolidation without vio-
lating service agreements, providers must have the ability to
provision shared resources to achieve performance isolation.
Most of the resources on a multicore machine can already be
provisioned to prevent workload interference using a combina-
tion of mature software technologies like virtual machines or
container systems [14] and hardware technologies like virtual
memory and cache partitioning [15], [16], [17]. Prior work
has shown how careful management of these resources can

increase consolidation without violating SLAs [10], [4], [18].
However, shared bandwidth, both on and off chip, remains
a difficult resource to control, and the lack of hardware
support “complicates and constrains the efficiency of any
system that dynamically manages workload co-location” [10].
As a result, state-of-the-art data center management solutions
choose either performance isolation or high utilization, but not
both [10], [4], [19].

Many bandwidth provisioning schemes have been proposed
in the literature. Generally, prior proposals fall into one of
two categories: those that regulate bandwidth at the source
(i.e., CPU) by throttling request rates [20], [21], [22], [23],
[24], and those that regulate bandwidth at the target (i.e., the
memory controller) by prioritizing queued requests [25], [26],
[27], [28], [29]. We show in this paper that neither approach is
sufficient by itself; work-conserving bandwidth provisioning
requires regulation at both the source and the target.

Systems that regulate bandwidth at the target through prior-
ity arbitration are only effective if queues at the target can hold
all outstanding requests. Otherwise, requests queue elsewhere
in the system (e.g., at the last level cache) where they are not
subject to the arbitration. While the queuing requirement for
target regulation may be feasible on small systems, a large
data center system would need hundreds of queue slots at
every memory controller in the system. Commodity memory
controller request queues are an order of magnitude smaller.

Similarly, a work-conserving bandwidth allocation system
that throttles requests at the source can only effectively
provision bandwidth if workloads are insensitive to request
latency. The amount of bandwidth a latency-sensitive workload
can generate decreases as memory latency increases. Since
a source-based system will not lower queuing delays at the
target, it is ineffective at bandwidth regulation when latency-
sensitive workloads are involved.

We illustrate the differences between source- and target-
based regulation in Figure 1. The figure shows two different
workloads. For the left two columns (a-b), we run two stream-
ing applications and attempt to allocate bandwidth between the
two streamers in a 3:1 ratio. For the right two columns (c-d),
we run one pointer-chasing workload that is highly sensitive
to memory latency with the same streaming application and
same 3:1 ratio as before. We evaluate both workloads using a
source- and target-based regulator, respectively, the details of
which are found in Section IV.



Fig. 1. Observed bandwidth consumption using either a source-only band-
width regulator or a target-only bandwidth regulator. In all cases, one
application is allocated 75% of the bandwidth and the other 25%. The best
regulation approach depends on the workloads.

Figure 1 shows two clear results. First, target-based reg-
ulation is ineffective when running workloads that can gen-
erate enough concurrent requests to oversubscribe the target
queues. In column (b), in which the two streaming workloads
run together and flood the system with requests, the target-
based regulator has a 76% allocation error. Second, source-
based regulation is ineffective when the amount of bandwidth
an application can generate depends on memory latency. In
column (c), in which the pointer-chasing application is paired
with a streaming application, the source-based regulator has a
128% allocation error because it is unable to lower the memory
latency for the pointer-chasing workload without sacrificing
utilization. In contrast, the target regulator, which lowers the
latency for the chaser by reducing queuing delay, fares better
in column (d). As we discuss in Section IV, the remaining
20% error from the target regulator can only be eliminated by
sacrificing the efficiency of the memory controller.

Based on the prior observations, we propose PABST, a
unified proportional bandwidth allocation mechanism that
regulates bandwidth at both the source and target. PABST
enforces a proportional share bandwidth allocation for each
class of service. Proportional shares are a common means to
specify differentiated QoS allocations in existing frameworks,
including those widely used in the data center (e.g., Linux
cgroups [30], VMware [14]). By using proportional shares,
PABST provides a hardware mechanism and leaves allocation
policy up to software.

PABST uses two components that work together to provide
robust bandwidth management. First, a bandwidth governor
at the source proportionally throttles requests in response to a
saturated memory controller. Second, a simple arbiter is added
to the memory controller scheduler to prioritize the requests
based the same proportional bandwidth share.

We show that PABST enforces bandwidth allocation with
the following properties:
• Proportional allocation: When all QoS classes can gen-

erate at least their allotted share, the observed bandwidth
will be in the same ratio as the allotted proportional
shares.

• Work conservation: Excess bandwidth will not go un-
used if at least one QoS class can consume it.

• Proportional distribution of excess bandwidth: If any
QoS class fails to consume its entire share, the excess
bandwidth is distributed proportionally among the re-
maining classes.

When PABST is used as part of a comprehensive, multi-
resource quality of service solution, users can simultaneously
achieve a minimum level of service for critical workloads and
maximize overall system utilization. Because PABST is work
conserving, only those QoS classes that exceed their fair share
of bandwidth are throttled. And, notably, that fair share is
determined dynamically in response to system conditions to
ensure the system runs near maximum utilization at all times.
Even a class with the smallest proportional share is able to
consume 100% of bandwidth when no other class competes
for the resource.

We show that PABST is able to accurately allocate band-
width across a wide range of workloads, ultimately eliminating
the long tail latencies in service times, reducing bandwidth-
induced slowdowns of high-priority workloads from 2.3–1.6×
to 1.3–1.1×, and increasing the utilization of a consolidated
host by up to 2x.

II. QOS BACKGROUND

A bandwidth allocation mechanism like PABST is one
piece of a robust Quality of Service (QoS) architecture. In
this section, we first discuss two important use cases for a
QoS architecture. Then we describe how software classifies
software abstractions into service classes, and finally describe
the proportional-share interface used by PABST.

A. QoS Use Cases

In this paper, we focus on two main use cases for a Quality
of Service architecture.

Use Case 1: Performance isolation for high-priority
services in consolidated systems. In a data center, a small
number of services drive the majority of the profit [31]. These
services, like search or ad auctions, often have strict perfor-
mance requirements. However, despite their importance, these
services rarely utilize available hardware resources completely,
leaving slack that could be used by less important workloads
to improve efficiency. Without the ability to guarantee perfor-
mance isolation, data center operators will often conservatively
schedule such high-priority workloads by themselves despite
the fact that doing so often leads to lightly-utilized systems
[2]. A QoS architecture could enable higher system utilization
if it were able to control the impact low-priority jobs have on
high-priority jobs.

To be effective for this use case, a bandwidth allocation
mechanism needs to (1) be able to quickly provision band-
width to meet the demand for a high priority service, and (2)
reallocate any excess bandwidth to low priority services to
increase utilization.

Use Case 2: Infrastructure as a Service (IaaS). Data
center operators, such as Amazon Web Services, Google

2



Cloud, and Microsoft Azure sell their compute infrastructure
as a service. Customers bundle their applications in a virtual
machine (VM) and submit it to the cloud along with resource
requirements like number of cores and cache capacity. As
systems become increasingly bandwidth constrained, IaaS
providers will likely add memory bandwidth as a resource,
allowing customers to pay for the amount of bandwidth they
need. In fact, Ben-Yehuda et al. argue that IaaS will evolve to
become Resource as a Service where fine-grained resources
are offered based on dynamic market pricing [32]. In either
case, operators will need to provide at least the amount of
bandwidth agreed upon. However, if excess bandwidth exists
on the physical machine in the data center, it is in the
operator’s economic interest to distribute that bandwidth in
order to increase the throughput of jobs and utilization of the
data center as a whole; doing so allows them to sell more
virtual machines with the same amount of hardware.

In the IaaS use case, a system may be running multiple
VMs with similar priority and similar bandwidth allocations.
To be effective, a bandwidth allocation mechanism should
guarantee each VM gets at least its specified share. It should
also redistribute excess bandwidth fairly among all VMs in
order to increase utilization.

B. QoS Framework

PABST operates as piece of a larger QoS architecture. Such
frameworks already exist in commercial products [17], and for
PABST we only propose adding a new bandwidth allocation
knob for each class of service.

A QoS architecture generally performs three functions:
classification, monitoring, and allocation. For classification, a
QoS identifier (QoSID) register is added to each CPU. Any
two threads that have the same QoSID value belong to the
same QoS class, and that QoS class serves as a container
for resource monitoring and allocation. The QoSID is under
the control of privileged software, which has the flexibility to
create arbitrary groups to match various software abstractions.
Common abstractions include virtual machines, containers,
process groups, and applications.

QoS monitors allow users to measure the amount of each
resource consumed by each class. For example, Intel’s QoS
architecture supports querying per-QoS-class last level cache
occupancy and memory bandwidth. The monitoring features
are useful when deciding how to best schedule workloads to
minimize interference.

Existing QoS architectures provide separate allocation con-
trols for each shared resource. In this paper, we assume that the
baseline system already provides controls to partition shared
caches among QoS classes, similar to Intel’s Cache Allocation
Technology [17]. We use those controls to isolate each class of
service in the cache. We discuss the interplay between cache
and bandwidth allocation in more detail in Section V.

For PABST, we add a single bandwidth proportional share
allocation control for each class of service. The share parame-
ter is set by the privileged software on behalf of administrators
and users and is discussed in more detail next.

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

Memory Controller

Memory Controller

M
em

o
ry

 C
o

n
tr

o
lle

r M
em

o
ry C

o
n

tro
ller

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

L3 Cache

CPU

L2

Fig. 2. Baseline: a 32-core, 4 memory controller mesh

C. Proportional Shares

In a proportional-share model, the fraction of resources
allotted to a consumer i is expressed by assigning it a nu-
merical weighti value. The system guarantees that within an
interval of time, the consumer will have available no fewer
than weighti/weighttotal of the resource, where weighttotal is
the sum of weights aggregated across all consumers.

ProportionalSharei =
weighti

∑∀ j weight j
(1)

While it is common for software and users to specify
proportional shares in terms of weights, the PABST algorithm
discussed later is simplified by using the inverse of weight,
commonly referred to as a stride [33].

stridei ∝
1

weighti
(2)

The stride represents the relative cost for a class to use a
resource. Higher strides translate into a lower share of the
resource. For example, a class given a stride of two will get
half as much of the resource as a class given a stride of one.

Users request resource allocations based on the relative
priority among the concurrently running applications. For
example, a latency-sensitive application may be given a grossly
disproportionate share to ensure that bandwidth consumption
of low-priority background tasks do not negatively affect
response time. In a virtualized system hosting virtual desktops,
it may make sense to give each an equal share. Significant
related work in this area exists, any of which could use PABST
as the underlying bandwidth control mechanism [10], [34],
[35], [36].

III. PABST

To keep the discussion concrete, we will describe PABST
in the context of the baseline system shown in Figure 2.
The system contains 32 CPUs arraigned in an 8x4 tiled SoC.
All system components are connected via an on-chip high-
bandwidth mesh interconnect. A tile contains a CPU, L1
instruction and data caches, a unified private L2 cache, and one
slice of a shared L3 cache. The L3 cache supports way-based
capacity partitioning that allows us to exclusively allocate a

3



L3 Cache

CPU

L2

Governor .

System 
Monitor

Rate 
Generator

M

Heartbeat SAT strideC

source_periodC

threadsC

Signals From Network Stored in Governor

Memory Controller 

Priority Arbiter .

Per-Class 
Virtual Time 

Table

Saturation 
Monitor

PacerL2 miss L3 Request

SATM

OR

SATM’

SATM’’
...SAT

Fig. 3. PABST Components

portion of the cache to a QoS class. Four memory controllers
are located on the edges of the system.

A. Overview

PABST has two components, shown in Figure 3: a governor
at each L2 cache (source) and a priority arbiter in the memory
controllers (target). The governor throttles requests from the
CPU in the same tile by pacing the rate that L2 cache misses
can enter the SoC network. The rate is calculated using a
feedback loop based on both the weighted share assigned to
the CPU being throttled and the current bandwidth demand.

The priority arbiter is a simplified version of a fair earliest-
deadline arbiter. The arbiter lowers the latency of DRAM
accesses in proportion to the same per-class weighted share
used by the governor. Together, the two components work in
tandem to provide work-conserving bandwidth allocation.

B. Governor

The PABST governors all work in tandem to (1) allow
enough traffic in the system so that the memory controllers are
fully utilized but not oversubscribed and (2) ensure that the
relative request rates at each CPU are in the same proportion
as the assigned proportional weights. The governors work in
lockstep to achieve the coordination but do not communicate
with one another. Rather, the distributed algorithm that the
governors run is designed to produce goal request rates in
the correct proportions as long as all governors see the same
two inputs: an epoch heartbeat and a binary saturation signal
(SAT) indicating whether or not the memory controllers were
oversubscribed during the previous epoch.

At each epoch boundary (e.g., 10 µs), the governors decide
whether to adjust the goal request rates higher or lower
and by how much. In general, the governors raise the goal
request rate when the saturation signal indicates that the
memory controllers can handle more requests without being
overcommitted and lowers the goal request rate otherwise. The

TABLE I
PABST GOVERNOR STATE

M A multiplier indicating the amount of throttling required to
keep the memory controllers from overcommitting.

δM The magnitude of the next change in M.
E The number of consecutive epochs in which the direction

(up/down) of the rate change has not switched
Phase Encodes the current direction of the goal rate and δM,

respectively.

Fig. 4. State transition diagram for the algorithm calculating M. M Intertia
is a configurable parameter that trades off responsiveness and stability, and is
set to 3 in the evaluation. A transition occurs at every epoch heartbeat and M
is recalculated according the actions in Table II.

magnitude of the adjustment depends on the recent saturation
history; adjustments are larger when the saturation signal has
been consistently high or low and smaller when the saturation
signal fluctuates. This rate policy ensures that the governors
are (1) quick to respond to changes in bandwidth demand and
(2) insensitive to noise on the saturation signal during periods
of stable bandwidth demand.

The governors consist of three subcomponents. The system
monitor tracks how far the current bandwidth demand in the
system is from the system’s bandwidth capacity. The system
monitor produces a multiplier, M, which is an indication
of how fast the system needs to change in order to either
relieve bandwidth pressure or increase demand to achieve
higher utilization. Since the system monitor tracks global
system behavior, all governors will independently produce the
same M values. The rate generator translates the system-wide
multiplier into a class-specific request rate. Those rates are
always proportional to the user-specified class share, and the
rates will sum across the system to so that the total bandwidth
demand matches the target implied by M. The pacer control
unit enforces the target rate by spacing requests coming from
the source (L2 cache). The pacer operates over a sliding time
window (� the epoch length), which allows bursts of requests
to proceed unthrottled as long as the class stays under its target
rate within the window.

We discuss each subcomponent in detail below.
1) System Monitor: The state machine to calculate M is

shown in Figure 4 and Tables I and II. M moves in the opposite

4



direction of the goal rate change (since it ultimately determines
the period, which is inversely related to the rate), and always
decreases following a low SAT signal and increases following
a high SAT signal. This causes the system to drive more traffic
when the memory controllers are under-committed and drive
less traffic when the memory controllers are overcommitted.

The magnitude of the change in M, denoted by δM, is small
when the SAT signal is noisy (implying the system is running
near ideal bandwidth usage) and increases rapidly when SAT
is steady so that PABST is responsive to sudden changes in
bandwidth demand. To accomplish this, δM always decreases
following a high SAT signal and only starts to increase again
once the SAT signal has stayed low for a configurable number
of epochs, which we call the inertia of δM (e.g., 3). This
hysteresis gives PABST stability without sacrificing too much
responsiveness. Changes in δM are always exponential, and
thus are implemented efficiently using a shift.

2) Rate Generator: The governor expresses the goal re-
quest rate as an average period, in cycles, between requests
(i.e., L2 misses) that enter the SoC network. A pacer cir-
cuit, discussed in Section III-B3, uses the period to space
out requests generated at the source. The request period is
determined by scaling the multiplier M by the share of the
class running behind the governor. Once a new value of M
is generated, it is combined with the stride, stridec, assigned
to the QoS class c running on the CPU to produce the goal
request period.

class periodc = (M ∗ stridec)/F (3)

The constant scale factor F , which effectively enables frac-
tional rate changes, gives more precise control over bandwidth
shares. If F is too high, then the algorithm is slow to converge.
If F is too low, then the algorithm may be unstable since the
period change between epochs may be too large. We find that
a value of 16 (right shift by four) works well in practice for
our baseline system.

Since strides are assigned to aggregate QoS classes rather
than individual CPUs, the stride must be adjusted to account
for the number of CPUs actively executing a class. Since we
are dealing with periods, multiplying the stride by the number
of active CPUs, denoted by threadsc, equally distributes the
bandwidth allocation for a class among all active threads.

source periodc = class periodc ∗ threadsc (4)

We discuss in Section V how threadsc can be tracked in
the system.

Maintaining Proportional Shares Every rate change that a
governor makes is proportional to the share of the QoS class it
is trying to throttle. As a result, PABST maintains the invariant
that the target rate is always in the same proportion as the share
specified by weightc:

Ratec

∑∀ j Rate j
=

weightc
∑∀ j weight j

(5)

Note that this invariant holds by design, and does not
require any governor to know the target rate of any other
governor in the system. Also note that the final target rate
determined by the governor may be higher than the rate that
the workload running on the CPU can actually generate. This
happens, for example, when one CPU is able to saturate the
memory controller bandwidth on its own while another CPU
is in a phase that infrequently accesses the memory controller.
This property makes PABST work conserving; a bandwidth
hogging CPU is able to consume all the bandwidth while the
other CPU doesn’t need it.

3) Pacer: The request period calculated by the governor is
enforced by a component called the pacer. The pacer enforces
the target rate by calculating the next cycle a request can issue
given the last request time and current period. The pacer builds
credit during periods of idleness, allowing for request bursts
to proceed unthrottled when the CPU has underutilized its
bandwidth allotment in the recent past.

The pacer tracks two timestamps, Cnext and Cnow. Cnext is the
next cycle that the cache is allowed to issue a new request and
Cnow is the current time (cycle count). Requests are throttled
whenever Cnext <Cnow.

When an L2 miss issues to the SoC network, the pacer
updates Cnext to Cnext +source periodc. The pacer builds credit
as Cnow and Cnext get further apart. We do not want the credit to
be unbounded, however, as that could allow a class to exceed
its target rate within an epoch. Thus, we bound the credit
by never letting Cnext get more than N cycles behind Cnow. In
our evaluation, we select N = stridec ∗16, effectively allowing
bursts of up to 16 requests to proceed before being throttled.

Accounting for Cache Filtering Looking at the system
model in Figure 2, PABST throttles a private L2 cache, even
though this component does not directly generate requests
to DDR memory. Rather, the memory requests are actually
generated from the shared L3 cache. To ensure that the target
rates determined by the governor translate into the same
bandwidth share at the memory controller, PABST must adjust
the target rates to account for accesses that hit in the L3 cache.

Conceptually, we would like to scale the target rate by the
ratio of local cache misses to shared cache misses. Calculating
this ratio on the fly would be difficult, and so we instead use an
approximation that is equivalent when viewed over a modest
window of time.

When a request leaves the local cache, we adjust Cnext
assuming that the request will find its way to memory. If the
request is instead serviced by the shared cache, we undo the
Cnext update by subtracting, rather than adding, the current
stride.

The shared cache may also generate a writeback if the in-
coming demand request causes a replacement. That writeback
causes extra memory bandwidth, which we ultimately account
to the same class as the demand request1. To do so, the
shared cache notifies the governor, via a flag on the response
message, when a writeback occurs. On receiving the writeback

1See Section V for a discussion of other writeback accounting methods.

5



TABLE II
PABST GOVERNOR STATE MACHINE TRANSITION ACTIONS.

Phase Rate:Up; δM:Up Rate:Up; δM:Down Rate:Down; δM:Down Rate:Down; δM:Up

Rate:Up
δM:Up

M = M−δM
δM = δM ∗2
E = E +1

-
M = M+δM/2
δM = δM/4
E = 0

-

Rate:Up
δM:Down

M = M−δM
δM = δM ∗2
E = E +1

M = M−δM
δM = δM/2

M = M+δM/2
δM = δM/4
E = 0

-

Rate:Down
δM:Up

-
M = M+δM/2
δM = δM/4
E = 0

-
M = M−δM
δM = δM ∗2
E = E +1

Rate:Down
δM:Down

-
M = M+δM/2
δM = δM/4
E = 0

M = M+δM
δM = δM/2
E = E +1

M = M+δM
δM = δM ∗2

notification, the pacer updates Cnext as if that writeback were
a demand request (i.e., by adding the stride).

C. Memory Controller

The baseline memory controller is split into two logical
partitions. A front-end accepts new requests from the SoC
network and places them in either a read or write request
queue. The back-end schedules accesses to the DRAM banks.
Requests flow from the front-end to the back-end greedily,
with preference given to reads over writes.

We add two functions to the baseline memory controller: a
saturation monitor and a priority arbiter.

1) Saturation Monitor: The saturation monitor calculates
the average occupancy of the front-end memory controller read
queue over the prior epoch. When the average occupancy is
greater than half of the queue capacity, the SAT signal for
the memory controller is raised. The SAT signals from all
memory controllers are logically ORed together and then are
forwarded to the governors at epoch boundaries. If traffic is
unevenly distributed to the memory controllers, the combined
SAT signal may lead to one or more underutilized memory
channels. This potential problem can be mitigated at least
two ways: with a uniform address hash that evenly distributes
requests to the memory controllers (our assumption in the
evaluation) or by throttling requests to each memory controller
independently. The latter solution would require a SAT signal
per memory controller and a governor per memory controller.

2) Priority Arbiter: The priority arbiter tracks the band-
width usage of each class and prioritizes requests from classes
that are furthest behind their target consumption. By prior-
itizing requests, the arbiter effectively lowers the latency of
requests from high-priority classes. In general, the priority
arbiter only affects the selection of read requests; since write
requests are not on the critical path, their selection order
does not affect performance. We leave the baseline channel
read/write switching policy unmodified.

The arbiter maintains a virtual clock per QoS class. The
virtual clock is incremented by stridec whenever a new request
is accepted. Upon entering the memory controller queues, a
request is assigned a virtual deadline equal to the current
virtual time of the class. To avoid an unbounded amount of
virtual credit from building during periods of idleness, the

virtual deadline is capped be at most slack (e.g., 128) virtual
ticks behind the last virtual deadline picked by the arbiter. If
a virtual deadline is limited by slack, then the updated value
is also written into the virtual clock for the class.

When selecting a read, the front-end arbiter selects a ready
request that has the earliest virtual deadline. Write requests are
not prioritized since they are not on the critical path. The back-
end arbiter prioritizes row hits over other ready requests, which
are serviced in virtual deadline order. This is a fair variant of
First-Ready, First-Come-First-Serve scheduling [26].

The arbiter is similar to the Fair Queuing Memory (FQM)
System proposed by Nesbit et al. [26], with several changes:
• The PABST arbiter tracks true virtual time by increment-

ing a per-class virtual clock by stridec for each request.
FQM approximates virtual time by scaling an expected
access time, in real clock cycles, by a per-class weight.

• While FQM charges more for requests that take longer
(e.g., bank conflicts), the PABST arbiter charges the same
amount of virtual time per access. Our modeling showed
the single charge method to be equally effective, perhaps
because we use a closed-page policy.

• We apply earliest-deadline-first priority in two places:
a memory controller front-end queue and the memory
controller back-end (bank) queues.

• We do not track virtual deadlines for banks and channels
separately. Instead, the controller only schedules and
prioritizes banks when the channel has free cycles.

D. Implementation Considerations

We assume that a centralized synchronizer sends out the
epoch heartbeat at regular intervals on a dedicated wires and
that the SAT signal is implemented as a global wired-OR line.
Alternatively, dedicated wires could be avoided by negotiating
epoch boundaries via sending special network packets on the
interconnect, similar to coherence messages.

Note that starting epochs at the exact same point in real
time for all governors is not critical, as long as the maximum
lag between the start times is much smaller than the epoch
size (the short period with the ”incorrect” target rate will be
in the noise when averaged over the length of the epoch). In
other words, ”lockstep” doesn’t imply perfectly synchronous
at the timescale of a single cycle, but rather at a timescale that

6



TABLE III
BASELINE SYSTEM PARAMETERS

CPU 2.2 GHZ, 32-entry LSQ
L1 I-cache 32KB, 64B lines, 8-way
L1 D-cache 32KB, 64B lines, 8-way
L2 cache unified, 256KB, 8-way, 128B lines, private
L3 cache 40 MB (1.25MB / tile), 20-way, 128B lines, shared
Memory controllers DDR4-2400 timing, closed adaptive page policy [39]

is a small fraction of an epoch. A similar approach was used
in Martin et al., to track distributed logical time [37].

The governor algorithm can be implemented using only
additions and shifts and a multiply on small (e.g., 12-bit)
values, thus keeping the logic small and efficient. Also, the
governor algorithm runs infrequently and is not on a critical
path; in fact, the algorithm could even run on a slower clock
than the cache.

The pacer, on the other hand, must run at the frequency of
the cache since it must be able to match the maximum request
rate. If the pacer circuit cannot complete in a single cycle, it
could be pipelined. If pipelined, requests may take an extra
cycle to be NACK-ed by the governor.

IV. EVALUATION

A. Methodology

To test PABST, we use an in-house, cycle-approximate
simulator that models a data center-class server. We simulate
the full system by using QEMU [38] as a functional front-end
that drives the cycle-approximate model back-end. The guest
image inside QEMU runs an unmodified Linux 3.15 kernel.

We model an out-of-order but non-speculative CPU that uses
perfect branch prediction and perfect memory disambiguation.
However, we enforce all register and address dependencies and
model structural hazards, such as the Re-Order Buffer (ROB)
size and Load/Store Queue (LSQ), that limit the instruction
window. We combine the CPU model with detailed models
of cache and DRAM, resulting in high fidelity on workloads
bottlenecked by the memory system. We have validated that
the performance reported by our simulator is within 10% of
data center hardware when running memory-bound workloads
(such as those evaluated in this paper).

The system under test is the 32-core SoC described in
Section III with details outlined in Table III. We accurately
model the bandwidth of all DDR DRAM and caches. Our
DDR model is based on one from gem5 [40], [39], but is
modified to support separate front-end and back-end queues.
The cache models were developed in-house. We do not model
internal SoC interconnect bandwidth, under the assumption
that it is appropriately provisioned to handle traffic when
running the memory controllers at peak throughput.

We investigate the properties of PABST using a mix of
microbenchmarks, SPEC CPU 2006 applications, and a mem-
cached server. We focus on two microbenchmarks: one that is
limited by latency and one that is limited by bandwidth. The
latency-sensitive microbenchmark (chaser) performs four
independent random pointer chases on each CPU. When run

on an out of order machine, chaser is able to sustain four
concurrent memory requests, making its performance sensitive
to both memory latency and bandwidth when multiple threads
of chaser run together. We run multiple concurrent threads
of chaser so that the benchmark can generate enough
bandwidth to saturate the system when run in isolation. The
bandwidth-sensitive microbenchmark (stream) is a hand-
optimized program that streams through an array at a 128-byte
stride. All the loads and/stores in stream are independent,
meaning that its performance is limited only by the available
bandwidth.

We use SPEC CPU2006 workloads as a proxy for data
center applications, since prior work has shown that they
degrade similarly to Google data center workloads in response
to resource contention [2], [7], [6]. We only show the subset
of the SPEC workloads that generate enough memory traffic
to saturate memory bandwidth in the system when running
on all CPUs, namely GemsFDTD, lbm, libquantum, mcf,
milc, omnetpp, soplex, and sphinx3. We profiled each
SPEC workload to collect simpoints [41], and run the highest
weighted simpoint from each of the aforementioned workloads
for 100 million instructions. When running N copies of
the same SPEC workload together, we report the weighted
slowdown (inverse of weighted speedup [42]), defined as

WeightedSlowdown =
IPCSP

∑
N
i=0 IPCMP

i
(6)

Due to infrastructure limitations, we run memcached on
an 8-core system where all components are scaled down 4×
compared to the 32-core system. The client thread runs in
the same guest QEMU image as the server, but we drop all
instructions coming from the client in the model so that it does
not affect the reported performance. In all reported results, we
run a single server thread for 1K transactions after warming
up for 10K transactions.

Unless otherwise stated, classes sharing the system are
given exclusive partitions of the last-level cache in order to
isolate the effects of bandwidth sharing. When comparing to
a baseline, we ensure that workloads in the both the baseline
and experimental runs are given the same cache allocation. We
use an epoch size of 10µs in all results.

B. Confirm Principles

First, we seek to confirm the principles laid out in Section I.

Principle 1: Proportional Allocation
In Figure 5, we show an execution with two QoS classes.

Both classes are running the read stream microbenchmark
on 16 cores. We allocate strides in a 7:3 ratio, such that
one class should receive 70% of the memory bandwidth
and the other 30% of the memory bandwidth. As shown in
Figure 5, PABST is able to quickly find the target rates that
result in the desired bandwidth allotment. Once at those rates,
the bandwidth remains steady, with only small perturbations
caused by operating system activity.

7



70% 30%

Fig. 5. Bandwidth consumed by two streaming microbenchmarks

70% 30%

Fig. 6. Bandwidth consumed by a constant streamer and periodic streamer

Principle 2: Work Conservation / Do No Harm
To test that PABST is work conserving, we pair the same

constant read stream used in Figure 5 with another streamer
that cycles through periods of memory-resident and cache-
resident streams. If PABST is work conserving, we would
expect the constant streamer to consume extra bandwidth
when the periodic streamer stops accessing memory. In our
experiment, we allocate 70% of bandwidth to the periodic
streamer and 30% of bandwidth to the constant streamer.

Figure 6 shows that PABST is able to quickly adapt the
target rates in response to a bandwidth change. When the pe-
riodic streamer stops accessing memory, the constant streamer
consumes nearly 100% of the system bandwidth. When the
periodic streamer resumes accessing memory, the constant
streamer is quickly throttled back to its 30% target allocation.

Principle 3: Proportionally Distribute Excess Bandwidth
We show how PABST distributes excess bandwidth in Fig-

ure 8. This experiment consists of one stream workload (L3
Stream) that fits in the L3 cache and two stream workloads
(DDR Stream) that do not. The L3 streamer is allocated 25%
of the memory bandwidth even though it does not significantly
contribute after warming up. We should see that the bandwidth
allocated to the L3 streaming workload is split in proportion
to the allocation of the other workloads. In this particular case,
we expect to see the high priority DDR stream, which is given
a 50% allocation, get twice as much of the excess as the low
priority DDR stream, which is given a 25% allocation. This is
indeed the case: the high priority stream receives about 66%
of the bandwidth, or 16% over its fair share, and low priority
stream gets 33% of the bandwidth, or 8% over its fair share.

C. Source and Target Regulation

In this experiment, we seek to confirm that PABST achieves
the benefits of both source and target regulation. We repeat
the experiment shown in Figure 1, this time adding PABST

50% 25% 25%

Fig. 7. Excess bandwidth is proportionally distributed

Fig. 8. PABST acheives the benefits of both source- and target-based
regulation.

as a bandwidth allocation mechanism. The three left bars
show the actual bandwidth consumption of two write stream
classes with a 3:1 ratio allocation ratio being managed with
either source-only, target-only, or both (PABST) regulators.
The three right bars show the same experiment except the
streamer with a higher allocation is replaced with the latency-
sensitive chaser microbenchmark.

PABST tracks the regulation method that results in band-
width consumptions closest to the specified ratio of 3:1. When
the chaser microbenchmark is used, we see that PABST
still has a small error in the bandwidth actual bandwidth
consumption. This is because the PABST target priority arbiter
has not lowered the request latency for chaser enough for
it to generate 75% worth of bandwidth. This highlights a
fundamental tradeoff in the priority arbiter – to lower the
request latencies further, we would have to sacrifice some
efficiency in the memory controller by using a request schedule
that would lead to more unused cycles on the data bus.

D. Performance Isolation

The primary goal of PABST is to enable performance
isolation in a consolidated environment. Towards that end, we
investigate the impact of PABST on both transaction-oriented
and batch-oriented jobs.

In Figure 9, we show how PABST can improve the ser-
vice times of memcached [43] transactions when co-located
with the stream microbenchmark. In this case, we consider
memcached to be high priority and therefore give it a large
proportional share relative to the streamer (20:1). The results
show that PABST nearly eliminates both the average service
time degradation and long tail. In our results, some (< 5%)

8



Fig. 9. Histogram of request service times for a memcached server running
in isolation, with a background stream job with and without PABST.

0

0.5

1

1.5

2

2.5

mcf milc soplex GemsFDTD libquantum lbm omnetpp sphinx3

Sl
o

w
d

o
w

n
 n

o
rm

al
iz

ed
 t

o
 IS

O

No QoS Target Source PABST

Fig. 10. Performance isolation with PABST. We show the slowdown of a
high priority application (the SPEC workload) when paired with a streaming
aggressor.

transactions in both the baseline and experimental runs that
take orders of magnitude longer to complete than what is
shown in Figure 9. The extreme scale of these service times
point to system-level causes such as a page fault or disk
access. We assume these types of outliers would be removed
by highly-optimized software [8].

In Figure 10, a multiprogrammed workload from SPEC
CPU running on 16 cores is paired with the read streamer
benchmark running on the remaining 16 cores. The baseline is
an execution with 16 SPEC applications in isolation (but with
the same limited cache allocation). We allocate bandwidth in
a 32:1 ratio to reflect disproportionate priority.

Overall, PABST reduces the slowdown induced by a band-
width aggressor from an average of 2.0× to just 1.2×.
PABST performs equally well on workloads that are mainly
bandwidth limited (e.g., libquantum) and workloads that
are mainly latency limited (e.g., sphinx3). We also show
the performance of PABST when just the source governor
or just the target arbiter are enabled. The two components
complement each other, and the combination is always best.

E. Work-Conserving Fairness

PABST can also be used to provision a minimum portion
of the memory system in a setting where classes have more
comparable priority, as one might find in a consolidated
IaaS scenario. While always providing a minimum memory
service level corresponding to either a fair equal allocation
or differentiated charge-back, PABST will also re-allocate the
memory bandwidth during periods of underutilization.

We test the efficacy of PABST by simulating a consolidated
IaaS environment. To model a machine with four virtual
clients, we run four classes of service on the same machine.

Fig. 11. Speedup of each QoS class running with a 25% allocation managed
by PABST normalized to the performance of the class running with a static
25% bandwidth provision. The performance of each class improves because
PABST is able to redistribute excess bandwidth.

SPEC Workload

% 
pe

ak
 b

an
dw

id
th

mcf
milc

so
ple

x

Gem
sFD

TD

lib
qu

an
tum lbm

om
ne

tpp

sp
hin

x3
0

50

100

Fig. 12. Bandwidth consumed by SPEC workloads and a background
streamer, respectively. SPEC bandwidth is in black (bottom) and STREAM
bandwidth is in blue (top). Within each group we show, from left to right,
SPEC in isolation, no bandwidth regulation, target-only regulation, source-
only regulation, and finally PABST.

Each class uses 8 cpus, and within a class we run the same
SPEC workload on all CPUs. We give each class a 25%
allocation to represent an equally distributed resource.

We compare the performance of each class to an 8 CPU
isolated run of the same workload but with DDR frequency
scaled down 4×. This approximates the performance of the
workload if it were to receive a static 25% allocation of
bandwidth. In Figure 11, we see that the SPEC workloads
achieve a 15-90% performance improvement compared to a
static bandwidth allocation. This improvement arises because
PABST is work conserving, and can redistribute excess band-
width when needed.

F. Memory Efficiency

PABST reduces the overall memory efficiency of the sys-
tem for two reasons. First, by prioritizing requests in the
memory controller based on proportional shares, we limit
the controller’s ability to select the most efficient schedule.
Second, the source governor algorithm transitions through
several epochs where traffic is intentionally driven below the
ideal saturation rate in order to discover what that saturation
rate is for the current conditions.

Figure 12 quantifies the loss of efficiency when running
SPEC workloads with a background streaming aggressor in

9



a 32:1 weight ratio (same workload mix as in Figure 10).
To separate the two sources of efficiency loss, we show
configurations where we have enabled only the governor,
enabled only the memory controller priority, or enabled both.

First, we note that without any QoS support, the memory
efficiency is typically high, largely due to the near-perfect
memory-level parallelism of the stream microbenchmark. A
notable exception is milc, which generates a request stream
that is difficult to schedule efficiently in the memory con-
troller. With bandwidth QoS enabled, the efficiency drops.
The magnitude of the efficiency drop is correlated with the
latency sensitivity of the SPEC workload. Workloads that get
most of the performance isolation from the target regulator
drive efficiency down the most. When a workload is sensitive
to latency, it goes through periods of low memory-level
parallelism. During these periods, there are few requests from
that workload to choose from in the memory controller. When
the memory controller is forced to pick among those few
requests because the workload is high priority, we increase
the chance that it will select a highly inefficient request.

Figure 12 also shows that for complex workloads, the
proportional share of class may not translate into a percentage
of the total bandwidth, at least not as one might naively expect.
For example, mcf in isolation can drive about 70% of the peak
memory bandwidth. While one may expect that mcf can drive
that same amount of bandwidth when given any proportional
share greater than 70%, we see that even when given a share of
32:1 (97%), the actual bandwidth usage drops. That drop is an
indication that mcf’s ability to drive bandwidth has decreased
because the average latency of memory accesses has increased
due to the streamer. Though we have added the QoS priority
scheduling at the memory controller to alleviate the problem,
in general it is not possible to get back to the original isolation
latency without giving up on work conservation.

V. DISCUSSION

A. Setting Stride Values

The absolute magnitude of stride values impacts the per-
formance of the PABST governor. If stride values are too
large, the overall rate change between epochs may be too
large to precisely hone in a target rate that maximizes system
throughput. We mitigate this problem somewhat by using
fixed-point arithmetic in the rate calculation (Equation 4), but
extremely large strides will still cause large rate swings. Large
stride values can also result in noticeable oscillations between
epochs, giving the appearance of instability.

B. Tracking Active CPUs Per Class

Because PABST proportional shares are set per QoS class
but the source pacers throttle individual CPUs, the governors
scale the stride parameter by the total number of active CPUs
executing the class (Equation 4). That means that either the
hardware or system software must track the active CPU counts.
In our evaluation, we have assumed that hardware tracks the
active CPU counts for each class by updating a memory-
mapped system register whenever the QoSID register changes.

Updates are broadcast so that all CPUs in the class are notified
of the new count. This broadcast mechanism is similar to the
broadcast that must occur on all TLB invalidate instructions
in the ARM architecture [44].

There may often be scenarios where some threads in a QoS
class generate significantly more bandwidth that others. The
current thread scaling mechanism, however, evenly distributes
the bandwidth allocation among all threads in a class. In
the future, we may consider adding feedback to facilitate
heterogeneous allocations within a class.

C. L3 Writebacks

In Section IV, all of our experiments use L3 cache parti-
tioning to isolate QoS classes from one another in the shared
cache. If two or more QoS classes are able to share cache lines
in the L3, a bandwidth algorithm like PABST must determine
which class is responsible for evictions that cause memory
write bandwidth. The answer is not obvious, and will often
vary based on the situation.

Consider two conceptual applications: one, called L3Res,
that fits entirely in the L3 and one, called ReadStream, that
streams through DDR but performs no writes. When either
of these runs in isolation, the L3 cache does not generate
any writebacks, and therefore the memory controller sees no
writes. When run together, ReadStream will cause evictions
of L3Res’s dirty data, causing writebacks to the memory
controller. L3Res will also cause writebacks of its own data
to the memory controller, since it is no longer L3 resident
when competing with ReadStream.

In this scenario, who is responsible for these writebacks?
The system could charge a pre-determined class (e.g., always
L3Res or ReadStream) based on a notion of priority.
It could also charge the class that allocated the line being
evicted, or charge the class whose incoming request caused
the eviction. These later two choices, while more dynamic, are
also inherently unpredictable, and it is such unpredictability
that leads to SLO violations and ultimately underutilization in
consolidated data center nodes. For that reason, we believe that
bandwidth allocation for QoS will always need to be paired
with corresponding cache capacity QoS in order to properly
account for such writeback traffic.

VI. RELATED WORK

The ability to allocate memory system bandwidth to soft-
ware tasks is critical for managing quality of service in mod-
ern processors. Unfortunately, hardware bandwidth controls
are not yet provided by any commercially-available systems.
As a result, state-of-the-art software resource managers like
Heracles [10] must resort to coarse-grained alternatives, such
as limiting the number of tasks allowed to run concurrently
in a consolidated system, or isolating workloads on separate
NUMA nodes in multi-socket systems.

Several prior hardware proposals for controlling mem-
ory system bandwidth rely on target-based quality-of-service
mechanisms. Nesbit et al. proposed a fair queuing memory

10



system based on concepts from networking scheduling algo-
rithms [26], and many follow-ons built on their work [27],
[28], [45]. A key limitation is that allocations are enforced
only among requests queued at the memory-controller target;
research has demonstrated that this can lead to incorrect
priority when the system is saturated with more requests than
the memory controller can hold [21], [20]. Our own evaluation
in Section IV confirms this result.

METE [45] uses a target-based mechanism for allocating
memory bandwidth as one part of a comprehensive, multi-
resource approach to system-wide quality of service. Their
approach is complementary to PABST, which could be used
in place of a target-only scheme for bandwidth allocation.

There are also many prior proposals in the literature for
throttling memory bandwidth at the source. However, to the
best of our knowledge, none of them set throttling rates based
on a proportional shares interface that gives users fine-grained
control over bandwidth as a resource.

Jahre and Natviq [21] and Ebrahimi et al. [20] both throttle
bandwidth at the source in order to achieve fair slowdown in
a consolidated system. Jahre and Natviq throttle bandwidth
by limiting the number of Miss Status Holding Registers
(MSHR) a class can occupy. Ebrahimi et al. pair an MSHR
limit with a static rate limiter. Both proposals use a feedback
loop driven by interference monitors that track how classes are
contending with one another, and attempt to throttle bandwidth
and cache capacity so that classes of equal weight slow down
equal amounts. For many workload mixes, a fair slowdown
utility function may lead to undesirable behavior; for example,
a cache allocation that leads to thrashing may slow down
workloads equally but also reduces system throughput. In
contrast, PABST gives users the ability to treat memory
bandwidth as a partitionable resource and leaves it to software
to determine the appropriate allocation policies, which is itself
a well-studied area [30], [14], [46]. PABST does not rely on
large interference tracking tables.

MITTS takes the interesting approach of throttling band-
width for a class by fitting traffic to a specific request distri-
bution [24]. In doing so, they are able to achieve the same
average bandwidth as a more static throttling mechanism but
at improved performance since they allow bursty traffic to
proceed without waiting. PABST does not shape traffic to a
specific distribution but the pacer does allow bursts to proceed
unthrottled by using stored credit. PABST unlike MITTS, is
also work conserving, leading to better system utilization.

Herdrich et al. throttle bandwidth at the source through
clock modulation and dynamic voltage and frequency scaling
[23]. Their solution is implementable with today’s hardware.
However, it is not work conserving and can only be set at
coarse intervals. Several software managers for consolidated
environments have used Herdirch’s approach, but all have
lamented the lack of more fine-grained control [10], [4].

Muralidhara et al. [47] partitioned bandwidth by restricting
classes to a subset of memory channels. In contrast to PABST,
partitioning based on channels only works with a small number
of classes and coarse allocations.

An alternative source-throttling approach uses feedback
based on measured latency to manage access to congested
resources. Delay-based network congestion control, pioneered
by TCP Vegas [48], was extended in FAST TCP [49] to
provide proportional-share control. PARDA [46] employs a
similar technique for enforcing proportional-share fairness
among distributed hosts accessing a storage array, adjusting
queue lengths based on the ratio of observed latencies to
a specified threshold. Instead of relying on fixed latency
thresholds, TIMELY [50] utilizes latency gradients to adjust
transmission rates in datacenter networks, in order to reduce
both congestion and tail latency.

VII. CONCLUSIONS

We have shown that memory bandwidth contention leads
to significant performance loss in co-located workloads. For
that reason, systems often go intentionally underutilized in
order to guarantee service requirements are met. To enable
higher utilization without sacrificing performance, we have
proposed the PABST system as a way to proportionally
allocate bandwidth among classes of service. PABST uses both
a source-based governor to throttle traffic in the system in
conjunction with a simple endpoint-based priority scheme to
lower the response latency of high-priority requests.

We have shown that together, the source-based governor
and endpoint priority are able to isolate the performance of
both latency- and throughput-oriented workloads. Performance
isolation enables further workload consolidation in the data
center and an overall reduction in total cost of ownership.

REFERENCES

[1] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-
aware cluster management,” in Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’14, 2014, pp. 127–144.

[2] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-
up: Increasing utilization in modern warehouse scale computers via
sensible co-locations,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-44, 2011,
pp. 248–259.

[3] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’11, 2011, pp. 295–308.

[4] G. Prekas, M. Primorac, A. Belay, C. Kozyrakis, and E. Bugnion,
“Energy proportionality and workload consolidation for latency-critical
applications,” in Proceedings of the Sixth ACM Symposium on Cloud
Computing, ser. SoCC ’15, 2015, pp. 342–355.

[5] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,”
in Proceedings of the 8th ACM European Conference on Computer
Systems, ser. EuroSys ’13, 2013, pp. 351–364.

[6] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “The
impact of memory subsystem resource sharing on datacenter applica-
tions,” in Proceedings of the 38th Annual International Symposium on
Computer Architecture, ser. ISCA ’11, 2011, pp. 283–294.

[7] L. Tang, J. Mars, and M. L. Soffa, “Compiling for niceness: Mitigating
contention for qos in warehouse scale computers,” in Proceedings of the
Tenth International Symposium on Code Generation and Optimization,
ser. CGO ’12, 2012, pp. 1–12.

[8] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

11



[9] L. A. Barroso, J. Clidaras, and U. Hoelzle, The Datacenter As a
Computer: An Introduction to the Design of Warehouse-Scale Machines,
2nd ed. Morgan and Claypool Publishers, 2013.

[10] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in Proceedings of the
42nd Intl. Symp. on Computer Architecture, 2015, pp. 450–462.

[11] Qualcomm, “Meet Qualcomm Centriq 2400, the worlds first 10-
nanometer server processor,” Press release, December 2016.

[12] Intel, “Intel Xeon processor E7-8890 v4 data sheet,” June 2016.
[13] Cavium, ThunderX Family of Workload Optimized Processors, 2015.
[14] VMware, Inc., “vSphere Resource Management,” https://pubs.vmware.

com/vsphere-60/topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-
server-60-resource-management-guide.pdf, 2015.

[15] H. Cook, M. Moreto, S. Bird, K. Dao, D. A. Patterson, and K. Asanovic,
“A hardware evaluation of cache partitioning to improve utilization and
energy-efficiency while preserving responsiveness,” in Proc. of the 40th
Intl. Symposium on Computer Architecture. ACM, 2013, pp. 308–319.

[16] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R. Singhal,
and R. Iyer, “Cache QoS: From concept to reality in the Intel R© Xeon R©

processor e5-2600 v3 product family,” in 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA’16),
March 2016, pp. 657–668.

[17] Intel, Intel 64 and IA-32 Architectures Developer’s Manual Vol 3B,
chapter 17.4.

[18] J. Leverich and C. Kozyrakis, “Reconciling high server utilization
and sub-millisecond quality-of-service,” in Proceedings of the Ninth
European Conference on Computer Systems, ser. EuroSys ’14, 2014,
pp. 4:1–4:14.

[19] K. Sudan, S. Srinivasan, R. Balasubramonian, and R. Iyer, “Optimizing
datacenter power with memory system levers for guaranteed quality-of-
service,” in Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’12, 2012, pp.
117–126.

[20] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via source
throttling: A configurable and high-performance fairness substrate for
multi-core memory systems,” in Proceedings of the Fifteenth Edition
of ASPLOS on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XV, 2010, pp. 335–346.

[21] M. Jahre and L. Natvig, “A light-weight fairness mechanism for chip
multiprocessor memory systems,” in Proceedings of the 6th ACM
Conference on Computing Frontiers, ser. CF ’09, 2009, pp. 1–10.

[22] R. Illikkal, V. Chadha, A. Herdrich, R. Iyer, and D. Newell, “Pirate: QoS
and performance management in CMP architectures,” SIGMETRICS
Perform. Eval. Rev., vol. 37, no. 4, pp. 3–10, Mar. 2010.

[23] A. Herdrich, R. Illikkal, R. Iyer, D. Newell, V. Chadha, and J. Moses,
“Rate-based QoS techniques for cache/memory in CMP platforms,” in
Proceedings of the 23rd International Conference on Supercomputing,
ser. ICS ’09, 2009, pp. 479–488.

[24] Y. Zhou and D. Wentzlaff, “MITTS: Memory inter-arrival time traffic
shaping,” in Proceedings of the 43rd International Symposium on
Computer Architecture. ISCA, vol. 16, 2016.

[25] F. Liu, X. Jiang, and Y. Solihin, “Understanding how off-chip memory
bandwidth partitioning in chip multiprocessors affects system perfor-
mance,” in 2010 IEEE 16th International Symposium on High Perfor-
mance Computer Architecture (HPCA’10). IEEE, 2010, pp. 1–12.

[26] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair queuing
memory systems,” in Proc. of the 39th Intl. Symp. on Microarchitecture,
2006, pp. 208–222.

[27] O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling
for chip multiprocessors,” in 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, December.

[28] N. Rafique, W.-T. Lim, and M. Thottethodi, “Effective management
of dram bandwidth in multicore processors,” in Proceedings of the
16th International Conference on Parallel Architecture and Compilation
Techniques, ser. PACT ’07, 2007, pp. 245–258.

[29] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,” in Proceedings
of the 35th Annual International Symposium on Computer Architecture,
ser. ISCA ’08, 2008, pp. 39–50.

[30] P. Menage, CGroups Users Guide, available on www.kernel.org.
[31] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,

G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in
Proceedings of the 42nd Annual International Symposium on Computer

Architecture, ser. ISCA ’15. New York, NY, USA: ACM, 2015, pp.
158–169.

[32] M. Ben-Yehuda, O. Agmon Ben-Yehuda, and D. Tsafrir, “The nom
profit-maximizing operating system,” in Proceedings of the12th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments, ser. VEE ’16, 2016, pp. 145–160.

[33] C. A. Waldspurger, “Lottery and stride scheduling: Flexible
proportional-share resource management,” in Ph.D. dissertation,
Massachusetts Institute of Technology, September 1995.

[34] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management
of multiple interacting resources in chip multiprocessors: A machine
learning approach,” in Proc. of the 41st Intl. Symp. on Microarchitecture,
2008, pp. 318–329.

[35] X. Wang and J. Martinez, “Xchange: A market-based approach to
scalable dynamic multi-resource allocation in multicore architectures,” in
High Performance Computer Architecture (HPCA’15), 21st Intl. Symp.
on, 2015, pp. 113–125.

[36] S. M. Zahedi and B. C. Lee, “REF: Resource elasticity fairness with
sharing incentives for multiprocessors,” in Proc. of the 19th Intl. Conf.
on Architectural Support for Programming Languages and Operating
Systems, 2014, pp. 145–160.

[37] M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M.
Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D. Hill, and D. A.
Wood, “Timestamp snooping: An approach for extending smps,” in Pro-
ceedings of the Ninth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS IX,
2000, pp. 25–36.

[38] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc. of
USENIX Annual Technical Conference, 2005.

[39] A. Hansson, N. Agarwal, A. Kolli, T. F. Wenisch, and A. N. Udipi, “Sim-
ulating DRAM controllers for future system architecture exploration,”
in 2014 Intl. Symp. on Performance Analysis of Systems and Software,
2014, pp. 201–210.

[40] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[41] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proc. of the 10th
Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems, 2002, pp. 45–57.

[42] S. Eyerman and L. Eeckhout, “Restating the case for weighted-IPC met-
rics to evaluate multiprogram workload performance,” IEEE Computer
Architecture Letters, vol. 13, no. 2, pp. 93–96, July 2014.

[43] B. Fitzpatrick, “Distributed caching with memcached,” Linux Journal,
vol. 2004, no. 124, pp. 5–, Aug. 2004.

[44] A. Limited, ARMv8 Architecture Reference Manual, 2016.
[45] A. Sharifi, S. Srikantaiah, A. K. Mishra, M. Kandemir, and C. R. Das,

“METE: Meeting end-to-end QoS in multicores through system-wide
resource management,” SIGMETRICS Perform. Eval. Rev., vol. 39, no. 1,
pp. 13–24, Jun. 2011.

[46] A. Gulati, I. Ahmad, and C. A. Waldspurger, “PARDA: Proportional
allocation of resources for distributed storage access,” in Proceedings
of the 7th Conference on File and Storage Technologies, ser. FAST ’09,
2009, pp. 85–98.

[47] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and
T. Moscibroda, “Reducing memory interference in multicore systems via
application-aware memory channel partitioning,” in Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-44, 2011, pp. 374–385.

[48] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New
techniques for congestion detection and avoidance,” in Proceedings
of the Conference on Communications Architectures, Protocols and
Applications, ser. SIGCOMM ’94, 1994, pp. 24–35.

[49] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation,
architecture, algorithms, performance,” IEEE/ACM Transactions on Net-
working, vol. 14, no. 6, pp. 1246–1259, Dec. 2006.

[50] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “TIMELY: RTT-based
congestion control for the datacenter,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, ser.
SIGCOMM ’15, 2015, pp. 537–550.

12


