
Introduction to Virtual Machines

Carl Waldspurger (SB SM ’89 PhD ’95)

VMware R&D

Overview

• Virtualization and VMs

• Processor Virtualization

• Memory Virtualization

• I/O Virtualization• I/O Virtualization

Types of Virtualization

• Process Virtualization

– OS-level processes, Solaris Zones, BSD Jails, Virtuozzo

– Language-level Java, .NET, Smalltalk

– Cross-ISA emulation Apple 68K-PPC-x86, Digital FX!32

• Device Virtualization• Device Virtualization

– Logical vs. physical VLAN, VPN, NPIV, LUN, RAID

• System Virtualization

– “Hosted” VMware Workstation, Microsoft VPC, Parallels

– “Bare metal” VMware ESX, Xen, Microsoft Hyper-V

Starting Point: A Physical Machine

• Physical Hardware

– Processors, memory,

chipset, I/O devices, etc.

– Resources often grossly

underutilizedunderutilized

• Software

– Tightly coupled to

physical hardware

– Single active OS instance

– OS controls hardware

What is a Virtual Machine?

• Software Abstraction

– Behaves like hardware

– Encapsulates all OS and

application state

• Virtualization Layer• Virtualization Layer

– Extra level of indirection

– Decouples hardware, OS

– Enforces isolation

– Multiplexes physical

hardware across VMs

Virtualization Properties

• Isolation
– Fault isolation

– Performance isolation

• Encapsulation
– Cleanly capture all VM state

– Enables VM snapshots, clones– Enables VM snapshots, clones

• Portability
– Independent of physical hardware

– Enables migration of live, running VMs

• Interposition
– Transformations on instructions, memory, I/O

– Enables transparent resource overcommitment,
encryption, compression, replication …

What is a Virtual Machine Monitor?

• Classic Definition (Popek and Goldberg ’74)

• VMM Properties

– Fidelity

– Performance

– Safety and Isolation

Classic Virtualization and Applications

• Classical VMM

– IBM mainframes:

IBM S/360, IBM VM/370

– Co-designed proprietary

hardware, OS, VMMhardware, OS, VMM

– “Trap and emulate” model

• Applications

– Timeshare several

single-user OS instances

on expensive hardware

– Compatibility

From IBM VM/370 product announcement, ca. 1972

Modern Virtualization Renaissance

• Recent Proliferation of VMs

– Considered exotic mainframe technology in 90s

– Now pervasive in datacenters and clouds

– Huge commercial success

• Why?• Why?

– Introduction on commodity x86 hardware

– Ability to “do more with less” saves $$$

– Innovative new capabilities

– Extremely versatile technology

Modern Virtualization Applications

• Server Consolidation
– Convert underutilized servers to VMs

– Significant cost savings (equipment, space, power)

– Increasingly used for virtual desktops

• Simplified Management
– Datacenter provisioning and monitoring– Datacenter provisioning and monitoring

– Dynamic load balancing

• Improved Availability
– Automatic restart

– Fault tolerance

– Disaster recovery

• Test and Development

Processor Virtualization

• Trap and Emulate

• Binary Translation

Trap and Emulate

Guest OS + Applications

Page Undef

U
n

p
ri

v
il

e
g

e
d

Virtual Machine Monitor

Page

Fault

Undef

Instr
vIRQ

MMU

Emulation

CPU

Emulation

I/O

Emulation

P
ri

v
il

e
g

e
d

“Strictly Virtualizable”

A processor or mode of a processor is strictly

virtualizable if, when executed in a lesser

privileged mode:

• all instructions that access privileged state trap

• all instructions either trap or execute identically• all instructions either trap or execute identically

Issues with Trap and Emulate

• Not all architectures support it

• Trap costs may be high

• VMM consumes a privilege level

– Need to virtualize the protection levels

Binary Translation

vEPC mov ebx, eax

cli

and ebx, ~0xfff

mov ebx, cr3

sti

mov ebx, eax

mov [VIF], 0

and ebx, ~0xfff

mov [CO_ARG], ebx

call HANDLE_CR3

start

Guest Code Translation Cache

sti

ret

call HANDLE_CR3

mov [VIF], 1

test [INT_PEND], 1

jne

call HANDLE_INTS

jmp HANDLE_RET

Issues with Binary Translation

• Translation cache management

• PC synchronization on interrupts

• Self-modifying code

– Notified on writes to translated guest code

• Protecting VMM from guest

Memory Virtualization

• Shadow Page Tables

• Nested Page Tables

Traditional Address Spaces

Virtual Address Space

0 4GB

Physical Address Space

0 4GB

Traditional Address Translation

Virtual Address Physical Address

1 24 5

TLB

Process
Page Table

2

3

Operating System’s

Page Fault Handler

Virtualized Address Spaces

Virtual Address Space

0 4GB

Physical Address Space

0
Guest Page Table

4GB

Machine Address Space

0
VMM PhysMap

4GB

Virtualized Address Spaces

w/ Shadow Page Tables

Virtual Address Space

0 4GB

Physical Address Space

0
Guest Page Table

4GB
S

h
a

d
o

w

P
a

g
e

 T
a

b
le

Machine Address Space

0
VMM PhysMap

4GB

S
h

a
d

o
w

P
a

g
e

 T
a

b
le

Virtualized Address Translation

w/ Shadow Page Tables

Virtual Address Machine Address

1 2
4

5 6

TLB

Shadow
Page Table

Guest
Page Table

PMap

2

3

3

A

Issues with Shadow Page Tables

• Guest page table consistency

– Rely on guest’s need to invalidate TLB

• Performance considerations

– Aggressive shadow page table caching necessary

– Need to trace writes to cached page tables

Virtualized Address Spaces

w/ Nested Page Tables

Virtual Address Space

0 4GB

Physical Address Space

0
Guest Page Table

4GB

Machine Address Space

0
VMM PhysMap

4GB

Virtualized Address Translation

w/ Nested Page Tables

Virtual Address Machine Address

1

TLB

3

Guest
Page Table

PhysMap
By VMM

1

2

2

3

Issues with Nested Page Tables

• Positives
– Simplifies monitor design

– No need for page protection calculus

• Negatives
– Guest page table is in physical address space

– Need to walk PhysMap multiple times– Need to walk PhysMap multiple times
• Need physical-to-machine mapping to walk guest page table

• Need physical-to-machine mapping for original virtual
address

• Other Memory Virtualization Hardware Assists
– Monitor Mode has its own address space

• No need to hide the VMM

Interposition with Memory Virtualization

Page Sharing

Virtual

Physical

Virtual

Physical

VM1

Machine

Read-Only

Copy-on-write

VM2

I/O Virtualization

Guest

Virtual Device Driver

Virtual Device Model

Abstract Device Model

Device Interposition
Compression Bandwidth Control Record / Replay

Virtual Device Driver

Virtual Device Model

Virtual Device Driver

Virtual Device Model

Hardware

H.W. Device Driver H.W. Device Driver

Compression Bandwidth Control Record / Replay

Overshadow Page Sharing Copy-on-Write Disks

Encryption Intrusion Detection Attestation

Device Back-ends
Remote Access Cross-device Emulation Disconnected Operation

Multiplexing
Device Sharing Scheduling Resource Management

I/O Virtualization Implementations

Guest OS

Device Driver

Device

Guest OS

Device Driver

Device Device

Host OS/Dom0/

Parent Domain

Guest OS

Device Driver

Hosted or Split Hypervisor Direct

Passthrough I/OEmulated I/O

Device Driver

I/O Stack

Device

Emulation

Device Driver

I/O Stack

Device

Emulation
Device

Emulation

Device

Manager

VMware Workstation, VMware Server,

Xen, Microsoft Hyper-V, Virtual Server
VMware ESX VMware ESX (FPT)

Issues with I/O Virtualization

• Need physical memory address translation

– need to copy

– need translation

– need IO MMU

• Need way to dispatch incoming requests• Need way to dispatch incoming requests

Backup Slides

Brief History of VMware x86 Virtualization

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009. . .

x86-64

Intel VT-x

AMD-V
AMD RVI

Intel EPT

ESX 3.5
ESX 4.0

VMware founded

Workstation 1.0

Workstation 2.0

ESX Server 1.0

ESX 2.0 (vSMP)

Workstation 5.5 (64 bit guests)

ESX 3.0

Passthrough I/O Virtualization

• High Performance

– Guest drives device directly

– Minimizes CPU utilization

• Enabled by HW Assists

– I/O-MMU for DMA isolation

e.g. Intel VT-d, AMD IOMMU

Device

Manager

Guest OS

Device Driver

Guest OS

Device Driver

Guest OS

Device Driver

Virtualization

Layer

e.g. Intel VT-d, AMD IOMMU

– Partitionable I/O device

e.g. PCI-SIG IOV spec

• Challenges

– Hardware independence

– Migration, suspend/resume

– Memory overcommitment

I/O MMU

VF VF VF

PF

PF = Physical Function, VF = Virtual Function

I/O Device

