
  

Abstract — We use a novel virtualization-based approach for 
computer architecture performance analysis. We present a case 
study analyzing a hypothetical hybrid main memory, which 
consists of a first-level DRAM augmented by a 10-100x slower 
second-level memory. This architecture is motivated by the 
recent emergence of lower-cost, higher-density, and 
lower-power alternative memory technologies. To model such a 
system, we customize a virtual machine monitor (VMM) with 
delay-simulation and instrumentation code. Benchmarks 
representing server, technical computing, and desktop 
productivity workloads are evaluated in virtual machines 
(VMs). Relative to baseline all-DRAM systems, these workloads 
experience widely varying performance degradation when run 
on hybrid main memory systems which have significant 
amounts of second-level memory. 

I. INTRODUCTION 
Current uses of PC-based virtualization have included 

server consolidation, enhanced security, and desktop 
centralization [20]. In this work we explore a new role for 
virtualization: performance modeling and analysis of new 
computer architectures. This has conventionally been done 
using software simulators, which typically offer great 
modeling flexibility at the cost of simulation speed [21]. 

A virtual machine monitor (VMM) is similar to a software 
simulator by providing an execution environment to run 
software. A VMM achieves higher performance by 
interposing only when necessary to manage privileged 
machine state and typically requires that the guest operating 
system and host machine share the same instruction set. This 
restricts the breadth of computer architectures that can be 
analyzed by a VMM-based tool. Nevertheless, for some 
scenarios, the combination of evaluation speed, freedom in 
target workload, and complete execution is attractive. We 
identify one such scenario and perform a case study. 

We target a hybrid main memory system featuring an 
additional level of memory inserted into the traditional 
memory hierarchy between DRAM and disk. This choice is 
motivated by two factors. First, recent memory technology 
developments offer some lower-cost, higher-density, and 
lower-power alternatives/complements to DRAM. Second, 
the software-based memory virtualization implemented in 
VMMs appears well-suited to model a hybrid main memory. 

The rest of the paper is organized as follows. Section  II 
reviews relevant trends in computing, memory technologies, 
and virtualization. Section  III describes the architecture of a 
generic hybrid main memory and its performance model. 
Section  IV describes our experimental method. Section  V 

presents quantitative performance data, which is analyzed 
and discussed in Section  VI. We summarize related work in 
Section  VII and give our conclusions in Section  VIII. 

II. BACKGROUND 

A. Processor and Computing Trends 
The power and thermal challenges faced when improving 

single-core processor performance are driving a shift to 
multi-core systems. These multi-core systems support more 
simultaneous applications and their memory working sets, 
thereby increasing pressure on system memory capacity. One 
way to cost-effectively address the need for capacity is to 
introduce a new layer in the memory hierarchy between 
DRAM and disk. Such a layer would bridge the five orders of 
magnitude performance gap between DRAM and disk, while 
offering a middle-ground cost structure. 

B. Alternative Memory Technology Trends 
Several current and emerging memory technologies (e.g., 

NAND flash, NOR flash and Phase Change Memory) possess 
characteristics making them candidates for this new memory 
layer. As an example, we compare the advantages and 
disadvantages of NAND flash with DRAM. Table 1 shows 
the density of DRAM and NAND flash over the next few 
years as predicted in the ITRS 2007 roadmap [12]. Table 2 
compares DRAM and NAND flash in cost, performance, 
power consumption, and endurance. Over the next 10 years, 
NAND flash will consume 10x less active power and 100x 
less standby power, command 10x more density, and cost 
4-8x less than DRAM. However, NAND flash is 10-100x 
slower than DRAM in access latency and data transfer rate, 
and has asymmetric read and write speeds (writes are 10x 
slower than reads). Furthermore, NAND flash must be 
accessed at a page granularity of up to 16KB, and each page 
can only be written a limited number of times. 

Although our study is guided in part by the salient 
characteristics of NAND flash, our method is not restricted to 
this technology. Rather, we allow a range of parameters for 
the hybrid memory, applicable to other technologies. 
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Table 1: ITRS 2007 roadmap for DRAM and NAND flash 

Gbits/cm2 2007 ’08 ’09 ’10 ’11 ’12 ’13 ’14 2015

DRAM 2.31 2.91 3.66 4.62 5.82 7.33 9.23 11.63 14.65

Flash SLC 5.97 8.44 10.60 13.40 16.90 21.30 26.80 33.80 42.50

Flash MLC 11.90 16.90 21.30 26.80 33.80 42.50 53.60 67.50 85.10



C. ESX Server Software VMM 
We implement the performance model of hybrid main 

memory by customizing the VMM component of a VMware 
ESX Server hypervisor [27]. Two existing features facilitate 
our implementation. First, an extra level of memory 
indirection exists in the VMM which translates guest physical 
addresses to host physical addresses used to access hardware 
[28]. The VMM manages the allocation and mapping of guest 
physical memory by maintaining metadata for each guest 
physical page. In simulating a hybrid main memory, we 
enhance this metadata to track an extra attribute for each 
guest physical page indicating whether it is of DRAM type or 
of alternative memory type. Second, the VMM implements a 
general-purpose memory protection mechanism called 
tracing. Upon accessing a trace-protected guest physical 
page, execution is directed to a designated handler in the 
VMM [1]. We employ a custom trace that triggers on 
accesses to alternative memory pages. The custom trace 
handler simulates the desired timing and collects statistics. 

III. ARCHITECTURE 

A. Hybrid Main Memory System 
Figure 1 shows the conceptual organization of a hybrid 

main memory system similar to the multi-level memory 
system proposed in [7, 8]. Since our exploration is similar in 
spirit, we adopt the terminology used in [8]: a second-level 
memory M2, comprising the alternative memory devices, 
augments a first-level memory M1 of conventional DRAM. 
We assume that an entire page is always transferred from M2 
to M1 before any of its data is accessible to the CPU. 

Many different mechanisms could be employed to manage 
the mapping and movement of memory pages between M1 
and M2 including both hardware and software techniques. 
Some of the possibilities include specialized memory 
controllers, a new OS-level memory management 
component, or a new hypervisor-level memory virtualization 
component. Exploration in this direction is beyond the scope 
of this paper. We instead focus on characterizing first-order 

performance implications of such a system using a 
VMM-based performance evaluation method. 

B. Performance Model 
In establishing the performance model of hybrid main 

memory systems, we focus on the time penalty of M2 
accesses. Our platform takes the following actions on each 
M2 page access: (1) The previously-installed custom trace 
handler is triggered. (2) A victim M1 page is chosen 
randomly across the entire physical memory space. (3) M2 
write latency is optionally incurred to account for transferring 
the victim M1 page to M2. (4) M2 read latency is incurred. (5) 
Additional delay is optionally incurred to reflect read/write 
bandwidth limits. (6) The M1/M2 markings of the victimized 
and faulted pages are swapped and so are their trace 
associations. No actual exchange of content is performed. 
While more sophisticated victim selection policies such as 
LRU are likely to perform better, our choice of random 
replacement provides a conservative baseline. 

We provide several parameters for configuring the hybrid 
memory system simulated by our performance model: 
• VM total memory size and M2 fraction of total memory.  
• Read latency: Time to access and transfer one page from 

M2 to M1. It is incurred upon an M2 access. 
• Write latency: Time to transfer one page from M1 to M2. 

It is incurred upon an M2 access unless it is hidden by the 
write buffer or when the M1 victim page is unmodified 
under an inclusive caching organization.  

• Read bandwidth: Read bandwidth limit is specified via 
two values, a time window (LR) and a maximum number 
of read operations (MR) allowed within the time window. 
Two state variables are maintained: counter (CR) and 
timestamp (TSR). CR starts from 0, increments upon each 
M2 access, and returns to 0 at MR. TSR records the time 
corresponding to the M2 access when CR = 0. When CR = 
MR, we delay until the time elapsed since TSR equals LR, 
and reset CR and TSR. 

• Write bandwidth: Same as above but on the write side.  
• Write buffer: Modeled by a ring buffer. Each buffer slot 

keeps a timestamp, recording the time when this slot is 
used to hold the content of a victim M1 page. When a M1 
page is victimized, if a write buffer slot is available, then 
no delay is incurred. Otherwise, we delay until the time 
elapsed since the oldest timestamp equals the write 
latency (i.e., the oldest buffer slot becomes available.) 

• Caching: Two organization alternatives are modeled. If 
M1 and M2 operate as an exclusive hierarchy, any M1 
victim pages must be written to M2. In an inclusive 
hierarchy, each M1 page is backed up in M2, so only 

Table 2: Cost, performance, power, and reliability comparison between DRAM and NAND flash 

 Erase Time Write Time Read Time Data Rate (Write) $ Cost Capacity/Chip Active Power/Chip Standby Power/Chip Write Endurance
DRAM N/A <100ns <100ns 800MB/s ~$2/Gb 1Gb ~500mW ~mW ∞

SLC 2ms 200µs 25µs 10+MB/s $0.9/Gb 8Gb 80mW 50µW 105

MLC 2ms 800µs 50µs 10MB/s $0.3/Gb 16Gb 80mW 50µW 104

M1 (DRAM) 

M2 (Alternatives) 

CPU 

 
Figure 1: A computer system featuring hybrid memory 



modified M1 pages must be written to M2. 
• Sampling frequency: M2 access statistics are logged and 

reset periodically. Two choices of this sampling 
frequency are supported: 1Hz and 10Hz. 

IV. EXPERIMENTAL METHOD 

A. Experimental Setup 
We measure the performance of complete systems 

consisting of unmodified applications running on 
unmodified, commodity operating systems. The experimental 
process involves the following steps for each application and 
configuration: (1) Configure a VM for the performance 
model described in  III.B. (2) Start the VM on the custom 
virtualization platform. (3) Run the application to its 
completion in the guest OS. (4) Shut down the VM making 
sure to record the relevant metrics and access statistics. 

For each application under investigation, we measure an 
appropriate application-specific performance metric. We 
establish a baseline VM for each application: this is an 
M1-only system where the VM guest memory is specifically 
sized to the application.  In most cases, this moderately 
exceeds the memory footprint. The memory footprint is the 
memory size of a VM that runs the application and guest OS 
without noticeable paging activity; while halving it would 
result in substantial disk paging. 

For each hybrid main memory configuration, we report the 
normalized performance of applications relative to their 
performance on baseline VMs. Note that we measure 
wall-clock execution time using an external time source. This 
is necessary since under heavy load, the VMM may distort 
the precise timing of guest timer interrupt delivery [26], 
which is exacerbated by our introduction of substantial M2 
delays. 

To minimize the variations introduced by hypervisor 
activities as well as concurrently-executing VMs, we ensure 
that the host processor and memory are under-committed 
when carrying out our experiments. First, we run only one 
VM at a time. Second, the host is configured with ample 
memory (8GB). Third, all experimental VMs are configured 
with a single virtual CPU bound to a dedicated host processor 
core. 

B. Benchmarks 
We use benchmarks representative of server, technical 

computing, and desktop productivity workloads. Table 3 

catalogs their memory footprints, baseline VM memory sizes, 
and the guest operating systems. 

We represent server workloads using a database (DB) and 
a Java-based business-logic (JBB) benchmark. We use 
Swingbench [10] as the database client and load generator to 
drive and test an Oracle 10g database server running inside a 
64-bit Linux VM. The Swingbench client process runs on a 
native Windows XP system and sends requests over the local 
network to the Oracle 10g database server. We use the 
transactions-per-second metric reported by the Swingbench 
client. SPECjbb2005 represents the middle tier of a three-tier 
client/server system with emphasis on components such as 
the JVM [22]. It calculates a business-operations-per-second 
(bops) value. We use this as its performance metric, re-scaled 
appropriately to the wall-clock execution time. The 
benchmark runs inside a 32-bit Linux VM provisioned with a 
BEA Jrockit 1.6.0 JRE. 

Kernel compilation (KC), Deal2, and MCF are technical 
computing workloads. Kernel compilation builds the Linux 
kernel from vanilla Linux 2.6.21 source code. Deal2 and 
MCF are from the SPEC CPU2006 suite [23], both featuring 
significant memory footprints and changing memory demand 
over time. All are run inside a 32-bit Linux VM and execution 
speed is reported (inverse of execution time). 

Business Winstone 2002 (WinB) is a desktop productivity 
benchmark representing real-world office usage [9]. In a 
single run, a session of operations with Word, Excel, 
PowerPoint, Access, FrontPage (all from Microsoft Office), 
Netscape, Microsoft Project, Norton Anti-Virus, and Lotus 
Notes is performed. The scripted session is tailor-made to 
include effects such as user wait time. It runs inside a 32-bit 
Windows XP VM. Since this workload performs the same 
operations during each run, we use its execution speed 
instead of a suite-specific score as its performance metric.  

V. RESULTS 

A. Performance Sensitivity to VM Memory Size 
Figure 2 shows application performance with respect to the 

VM memory size. A key observation is that application 
performance is largely a make-or-break case with respect to 
the total memory size. The performance-sensitive range is 

Table 3: The benchmarks 

Name Workload Footprint Baseline VM Guest OS 

DB Oracle 10g / 800MB 1024MB 64-bit Linux 

JBB SPECjbb2005 400MB 512MB 32-bit Linux 

KC Kernel Compilation 300MB 512MB 32-bit Linux 

Deal2 SPEC CFP2006 500MB 512MB 32-bit Linux 

MCF SPEC CINT2006 900MB 1536MB 32-bit Linux 

WinB Business Winstone 128MB 512MB* 32-bit Windows 
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Figure 2: Performance sensitivity to memory size on a M1-only system. 
X-axis is VM memory size (MB). Y-axis is normalized performance (relative 
to baseline VMs). 



also quite narrow: Once the VM memory size exceeds the 
footprint of a workload, additional memory yields little 
performance benefit. These results guide our baseline VM 
memory sizing for all applications except WinB. Unlike other 
applications, WinB’s footprint (128MB) is smaller than 
typical systems running Windows XP. To remain consistent 
with typical systems, we sized the baseline VM for WinB at 
512MB. 

B. Performance Impact of M2 Latency 
In Figure 3, we plot the benchmarks’ performance 

sensitivity to M2 fraction and M2 latency. The benchmarks 
exhibit widely-varying tolerance to these parameters. A 
hybrid memory of 25% M2 (40µs read latency) causes less 
than 5% performance degradation to all the benchmarks. DB 
exhibits a high level of tolerance to both large M2 fractions 
and long M2 read latencies—a 60% M2 with 400µs read 
latency yields only 7% performance degradation. KC and 
Deal2 show medium tolerance to M2 latency, while JBB and 
MCF suffer even under a modest M2 fraction. WinB shows 
similarities with both M2-sensitive and M2-insensitive 
applications depending on the M2 latency. 

C. Performance Impact of M2 Bandwidth 
In Figure 4, we plot the performance sensitivity to M2 

bandwidth by varying the bandwidth limit (assuming zero M2 
latencies). We also report the average and peak demand for 
M2 bandwidth (using 10Hz sampling) when the application is 
not constrained.  

It is not surprising to see that demand for M2 bandwidth 
(i.e., M2 access throughput) increases as the specified M2 
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Figure 3: Performance impact of M2 read latency. Each subfigure evaluates a particular value of M2 read latency. X-axis is M2 fraction. Y-axis is 
normalized performance (relative to baseline VMs). 
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Figure 4: Performance impact of M2 bandwidth capacity. Each subfigure 
evaluates one benchmark. X-axis is M2 fraction (commented with 
application’s demand for M2 bandwidth, both average and peak, in MB/s). 
Y-axis is normalized performance (relative to baseline VMs). It is noted that 
performance under 640MB/s is indistinguishable from that under unlimited 
bandwidth. MCF graph is omitted as it demonstrates a very similar pattern 
as JBB. 



fraction increases. Yet, the extent to which an M2 bandwidth 
limitation can influence performance is benchmark-specific: 
JBB is much more sensitive to M2 bandwidth limitation than 
KC and DB. 

As described in Section  III.B, a bandwidth limit is enforced 
at a parameterized time window. All bandwidth values in 
Figure 4 are enforced using a 10ms window. 

D. Effectiveness of Write Buffers 
The long write latency of some candidate M2 memory 

technologies makes their viability questionable. A natural 
approach to accommodate slower writes is write buffering. 
Comparing the two subfigures of Figure 5, we can see that a 
modestly-sized write buffer of 64 pages effectively hides 
write latencies as long as 1ms. Hence, write latency is not 
necessarily a problem in the hybrid main memory system. 

E. Utility of Inclusive Caching 
Some potential M2 memories support only a finite number 

of writes over their lifetime. To reduce writes, we 
experimented with inclusive- as well as exclusive-caching 
policies. Under inclusive caching, only dirty M1 victim pages 
are written back to M2. However, we observe only modest 
write savings with this approach (1-20%) for 75% M2 
fraction, suggesting limited utility of this technique. 

VI. DISCUSSION 

A. Measurement versus Simulation 
A prototyping tool is valuable in the exploratory stage of 

new system designs. Developing such a tool is often a 
balancing act, trading off details, speed, flexibility and 
workload support. For example, Ekman et al. [7] used a 
complex methodology employing simulation, direct 
measurement of native execution, and various extrapolations. 

Virtualization offers an interesting alternative to address 
this problem. We have demonstrated the capability of a 
VMM-based tool to run a variety of full workloads to 
completion in real time. We were also able to explore a large 
evaluation space simply by changing VM settings. Thus, 
within the constraints of our chosen scenario, we achieved a 
blend of evaluation speed and flexibility. In the following 
sections, we validate the timing accuracy of our approach. 

B. Measurement Bias 
Since we measure wall-clock execution time, we must 

ensure that the impact of non-guest components included in 
the wall-clock execution time doesn’t distort the comparisons 
between executions of the same guest code under different 
configurations. Non-guest components include synchronous 
VMM code (trace delivery cost), asynchronous hypervisor 
activities (virtualization, scheduling, etc.), as well as M2 
access simulation/instrumentation code. 

We expected minimal environmental disturbance (e.g., 
cache pollution) due to the modest footprint of simulation 
code and data (<200 lines of C code and ~4KB of internal 

states). We also expected minimal disturbance from 
asynchronous hypervisor activities, given our tight control 
over the host and the experiment environment. The left part of 
Figure 6 exhibits a linear relation between the application 
slowdown and M2 access latency, validating the expectation 
of minimal environmental disturbance affecting guest 
execution and suggesting a fixed trace delivery overhead. 

However, in the right part of Figure 6, we observe that as 
our target latencies drop below 10µs, the plots are no longer 
linear. We suspect this is because the actual induced latency 
exceeds the specified latency, due to trace delivery and 
instrumentation overhead. Hence, our platform tends to 
overestimate the slowdown for small M2 latencies of a few 
microseconds. We confirm this limitation of our platform by 
adding instrumentation to count overtimes. Overtimes occur 
when our inserted simulation and delay calculation code takes 
longer to execute than the specified latency. We confirmed 
that overtimes occur most frequently for latencies below 4µs, 
and almost never for latencies greater than 10µs. We also 
observe a trend of decreasing ability to simulate small 
latencies as M2 is accessed less frequently. This occurs when 
the M2 portion is small. We hypothesize that this is due to the 
decreasing likelihood that the delay simulation code and data 
remain resident in the processor caches. In all cases, however, 
the pessimistic bias of our platform decreases as the 
slowdown due to M2 accesses increases, whether through 
longer M2 latencies or through more frequent M2 accesses. 
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Figure 5: The effectiveness of write buffers to hide M2 write latency. Each 
subfigure evaluates one write latency value. X-axis is the write buffer size 
(number of M2 pages). Y-axis is normalized performance (relative to baseline 
VMs). All VM are configured with 4µs read latency and 75% M2 fraction. 



Our platform is never optimistic. 

C. Observational Granularities 
When generating the peak bandwidths reported in section 

 V.C, we record and reset aggregated statistics of M2 accesses 
for each sampling period. Since our implementation is limited 
to a maximum sampling rate of 10Hz, our observation 
granularity is limited. We want to estimate the likelihood that 

this limitation leads to information loss. Our approach is to 
see how much additional information we gain by sampling at 
10Hz versus 1Hz. In Figure 7, we compare the page access 
histograms attained with 10Hz sampling to those we would 
be able to extrapolate from 1Hz sampling, assuming a 
uniform distribution for M2 access inside a sampling period. 
When these histograms generally match, as for MCF, we 
have confidence that we are not missing major trends with our 
10Hz sampling. However, mismatches as observed in KC, 
suggest that even finer sampling granularity would be 
desirable to detect short-lived periods of high M2 throughput. 
In fact, bursty M2 accesses can explain the seemingly 
counterintuitive observation from Figure 4: Even when the 
bandwidth limit exceeds the peak 10Hz-sampled throughput, 
performance still lags behind the case in which bandwidth is 
unlimited. 

D. Validation with Prior Results 
For validation of our platform, we compare our observed 

memory access profiles to those previously published. For 
example, the signature behavior of the working set size of 
deal2 (from SPEC CPU2006) reported in [11] roughly 
matches the M2 page access rate profile obtained from our 
experiment (Figure 8). First, it is apparent the memory access 
profile is dominated by the application itself instead of other 
software components. Second, it is consistent that M2 access 
count matches working set size, given the high M2 fraction 
(75%) and random M1 replacement policy. Finally, note that 
the last three major phases are prolonged in the bottom 
subfigure. These exactly correspond to situations where 
working set size exceeds the M1 capacity of a hybrid memory 
(512MB × 25% = 128MB), causing significant paging into 
M2, and a corresponding elongation of the execution time 
due to the limited M2 access rate of our platform. 

VII. RELATED WORK 
An early virtualization-based performance evaluation was 

investigated on the IBM VM/370 system [3]. A key 

MCF

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 2000 4000 6000 8000 10000 12000 14000

Fine
Coarse

KC

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 500 1000 1500 2000

Fine
Coarse

Figure 7: Histograms of M2 access throughputs. Each subfigure evaluates 
one benchmark where M2 comprises 75% of the total memory and has two 
curves—fine and coarse. The fine curve shows what is extracted and 
observed from a VMM 10Hz sampling. The coarse curve shows what is 
extracted from a VMM 1Hz sampling but uniformly distributed inside its 
1-second period. X-axis is M2 page access counts during each 0.1-second 
interval. Y-axis reports the number of intervals during which certain M2 
access counts are observed, normalized to the total number of intervals. 

Slowdown vs Latency 
@ 75% M2

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400
Latency (µs)

Sl
ow

do
w

n 
du

e 
to

 M
2

KC
SPECJBB
SwingBench
Deal2
MCF

    

Slowdown vs Latency 
@ 75% M2

1

10

100

1000

1 10 100 1000

Latency (µs)

S
lo

w
do

w
n 

du
e 

to
 M

2

KC
SPECJBB
SwingBench
Deal2
MCF

 
Figure 6: A linear relationship between normalized slowdown and M2 access latency is observed. Y-axis is the slowdown from baseline performance where 
there is no M2. X-axis is the read latency. The right subfigure plots the same data in logarithmic scale and shows that as latency drops below 10µs, the 
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difference was the use of virtual time, independent of the real 
wall-clock time. The progress of the virtual time was 
controlled through a virtual processor speed parameter. 
Memory subsystem performance was lumped into the 
coarse-grained virtual processor speed. Hence, the 
performance of a workload reported in virtual time is strongly 
influenced by the accuracy of the virtual processor speed, 
which is itself workload-dependent. This circular dependence 
presents challenges when the virtual processor speed cannot 
be estimated reliably. Still, use of virtual time would broaden 
the scope of VMM-based performance evaluation. 

The mechanism of our VMM-based simulation resembles 
trap-driven memory simulation [24]. Unlike conventional 
simulation where each memory access has to be evaluated, 
only misses in the simulated cache are evaluated in 
trap-driven simulation. The simulator ensures hardware traps 
are always installed on the memory locations associated with 
the simulated cache miss addresses. Simulation is done in a 
kernel trap service routine where it recalculates associations 
between memory locations and traps and records statistics. 
Special care must be taken to avoid setting traps on code and 
data of the simulator itself, as it would complicate the 
interpretation of statistics collected. 

Analytical studies have previously suggested more levels 

in a main memory hierarchy to approach more cost-effective 
combinations [16, 19, 2, 13]. The two-level memory 
proposed in [8] encompasses the memory system studied 
here. The Simics full system simulator [17] was used to 
simulate the two-level main memory to obtain first-level miss 
counts. Execution time is estimated by adding the product of 
the miss counts and the second-level access latency to the 
baseline time. Complete runs of large workloads are nearly 
impractical due to simulation slowdown. The authors stated 
that it took several weeks to bring a simulated machine into 
the steady-state execution phase. 

Multi-level main memories have been implemented in real 
systems [6, 5] and research prototypes [15]. In Multics, a 
strategy to treat core memory, drum, and disk as a three-level 
system was proposed [6]. The IBM 3090 system provided an 
expanded memory in addition to its main memory [5]. Similar 
to our conceptual architecture, data in the expanded memory 
must go through main memory to become accessible to the 
CPU. In [15], a research hardware system was built and 
evaluated. It featured a primary memory bus connecting to 
fast but low-capacity primary memory modules and a 
secondary memory bus connecting to high-capacity but 2x 
slower memory modules. 

Prior research introducing alternative memories (NAND 
flash in particular) into the memory hierarchy concentrated 
on finding a narrower usage domain (e.g., file buffer cache 
between DRAM and disk) to avoid expected performance 
degradation, while achieving other benefits such as power 
savings [18, 4, 14, 25]. In [18, 4], the designs were evaluated 
through off-line trace-driven simulation. In [14], the design 
was evaluated using full system simulation. In [25], the 
design was implemented in a custom Linux kernel. 
Performance and power characteristics were derived from 
measurement based on complete systems. 

VIII. CONCLUSION AND FUTURE WORK 
In summary, we explore using a VMM for the performance 

evaluation of new computer designs. Using a customized 
VMM, we investigate some performance trends of hybrid 
main memories. We find that only certain workloads are 
amenable to hybrid main memory systems when total 
memory size is tightly provisioned. However, for all of our 
workloads, we show that a hybrid memory system with M2 
latency of up to 40µs reduces performance by less than 10%, 
as long as DRAM is apportioned for at least 75% of the 
working set. This is a reasonable configuration, since today’s 
real-world systems are likely to be over-provisioned. We also 
evaluate the effectiveness of some organization choices (such 
as write buffer and caching scheme) in mitigating the adverse 
impact implied by some suboptimal characteristics of 
potential M2 memories. Most importantly, we validate the 
VMM-based performance evaluation technique, finding that 
it offers both evaluation speed typical of hardware 
prototyping and evaluation flexibility typical of software 
simulation, with modest incremental development effort. 

 

The 3 peaks that are elongated 
when we run with 75% flash are the 
3 peaks that are above the 128MB 
DRAM portion of the hybrid memory. 
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Figure 8: Working set size profile of deal2 reported in [11] superimposed with 
our comments (top) and obtained in our experiment (bottom). The experimental 
VM has 512MB of total memory, 75% of which is M2.  



As future work, we plan to extend our study to SMP VMs 
with multiple virtual CPUs. We are also conducting research 
on algorithms which adapt to hybrid main memories and plan 
to investigate their effectiveness on our platform. 
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